
Computational Methods
for Linguists

Olga Zamaraeva (Instructor)
Yuanhe Tian (TA)

04/08/21

Ling 471

1

Reminders

• First blog post due today (5 posts)

• Responses due by next lecture (April 13)

• Each student not blogging responds to one post

• Assignment 1 due April 13

• If you still don’t have patas access:

• Email Olga now with info: when you requested it

• If you don’t have access by EOD Friday, you can get
an extension for Part 4

• Assignment 2 will be published by Apr. 13-15
2

Plan for today

• IDE: First steps programming

• Command line

• Virtual environments

• Version control (git)

• See Olga getting confused during demos!

• Please interrupt the demos and ask questions!

3

Integrated Development Environments

• Source code editor + build automation + debugger

• (and more)

• Editor: to enter text for the program

• Recall a program is just text

• Build automation: (path to) compiler/interpreter etc.

• Debugger: inspect program state step by step

• We are using Visual Studio Code

• Popular for python: Pycharm

• VS Code supports a variety of languages

• Demo: setting up a python project and debugging

aka IDEs

4

https://medium.com/analytics-vidhya/difference-between-text-editor-and-ide-integrated-development-environment-73f8b2368de6

Programming first steps

• To program, you need to understand:

• Input/output

• Assignment

• Variables, types

• Math and logical operators

• Control flow:

• Conditionals

• Repetition (loops)

• Function, classes, inheritance, object properties,
keywords

(preview of next week!)

5

Debugging

• Checklist:

• Set up the debugger with a running config

• Entry point of a program

• Stepping into a function

• Stepping over statements

• Inspecting program state

• Stopping and resuming/restarting

In VS Code

6

Command line

• A tool to give operating system instructions

• e.g.:

• Run python version 2.6 on the code stored in a file located
in Documents/program.py, and pass that program a folder
located in ~/data and a file located in ~/models/neural-
model.h5 as the arguments; store the output in a file
called ~/results-h5.txt. Then sort the results in decreasing
order and store in file called ~/results-h5-sorted.txt

• Need special language to pass that sequence
of commands

7

Command line

• A tool to give operating system instructions

• e.g. Extract contents from ~/Download/
imdb.tar.gz

• Windows cmd prompt:

• dir: list current directory

• tar -xf filename: extract files from archive

• dir: list current directory again

• The aclImdb folder is new

8

Command line

• Unix-based:

• “Terminal” for command line; bash language

• e.g. “ls” to list a directory

• “cd” to change directory

• Windows:

• “Command prompt”; batch language

• e.g. “dir” to list a directory

• Still “cd” to change directory

• Linux bash also available as an additional feature

• Demo

Unix-based vs Windows

9

Command line

• List directory: ls/dir

• Change directory: cd

• Create directory: mkdir

• Copy file(directory): cp (cp -r)/copy (xcopy)

• Move (rename!) file or directory: mv/move

• Run a program (with arguments)
• e..g “python” to run python

• Ask the system, what the current path is: pwd/echo %cd%

• More advanced:
• Connect to a remote machine: ssh

• Open a text file in a command-line editor

• And then try to exit it :)

Common commands Linux-Mac/Windows

10

The great power of command line

• The terminal stores previous commands

• Repeat a complex command simply by hitting
the up-arrow

• The terminal knows which paths are available from
the current directory

• Autocomplete paths by hitting TAB

…the up-arrow and the tab

11

Version and source control

• Keep snapshots of all the changes

• Organized in batches, with comments

• Go back to any version any time

• A life-saver!

• Originally for groups of people working on the
same project

• Essential for sole developers as well

• As a general back up

• As a way of having stable versions you can rely on

Git

12

https://medium.com/@vemulasrinivas2505/version-control-systems-74375eb48961

Version and source control

• Remote repository

• e.g. on Github

• Local repositories

• The one you have on your computer

• Other people’s, if they also cloned the same
remote

Git repository structure

13

https://medium.com/@vemulasrinivas2505/version-control-systems-74375eb48961

Version and source control

• You can clone remote repositories

• …or fork them

• To get starter code for future assignments, you
will fork the “skeleton” repositories we created
for you

• This means you cannot push back into them

• They become your own repository copies

• Note: You wont submit to the forked copy

• Always carefully read instructions what to submit how

Git repository structure

14

https://medium.com/@vemulasrinivas2505/version-control-systems-74375eb48961

Version control

• Pick which changes
to include in a
version

• Note: while some
changes are
unaccounted for, won’t
be able to integrate
stuff from other
versions

Staging changes

15

Version control

• Once you picked which changes you want
to commit them to the new version

• Screenshot: 1 staged change ready for commit

• Commit (in git) does not mean the changes
went to the remote repository!

• And that is a good thing!

• Pushing to remote affects

other people

Committing changes

16

Version control

• Once you committed some changes, send them
to the remote repository

• Now, others will only be able to push their
changes to it if there are no conflicts

• Likewise, you will be able to pull others’
changes but then may need to deal with
conflicts, if you made changes to the same lines

• Do some demo:
• Adding files, staging changes, committing, pushing

Pushing and pulling changes

17

Version control

• This can be unpleasant :(

• We won’t have to do much of this

• Idea:
• Remote has its own opinion about some

lines

• Local has its own opinion

• You need to go into the file and decide what
you want

• Sometime it’s pretty manual work :/

• Goal: only leave meaningful python lines

• Do some demo here.

• NB: Git GUIs often fail to resolve conflicts
• Command line to the rescue!

Conflicts and merging

18

Questions?

19

