
Computational Methods
for Linguists

Olga Zamaraeva (Instructor)
Yuanhe Tian (TA)

04/13/21

Ling 471

1

Takeaways

• Available tools:

• GUIs: IDEs, text editors

• Good for most users, especially to write code

• And to debug

• Command line

• Most people don’t like it because it is easy to write a wrong
command and hard to understand what the problem is

• Sometimes inevitable

• More general and powerful than any GUI

• Version control (via both GUI and command line)

• Keep track of your development

• Back up

From April 8

2

Version control

• In this class:

• Focus on storing code and keeping track of changes

• Use GitHub or VS Code GitLens extension to look at
diffs

• If you actually need to go to a previous version:

• Don’t let it frustrate you and use office hours :)

• Retreiving previous versions is important

• But not straightforward :(

• Some hints at the end of slide deck

• We will address this as needed

What we need

3

Reminders

• Assignment 1 is due tonight

• Make sure we can map your full name to
your GitHub username!

• e.g. put it in README

• e.g. email the mapping to us

• “Full name: Mary Carrasco. GitHub: mcar22”

• If no patas access:

• Let Olga know asap, including date when you
requested the access.

4

THANKS, EVERYONE,
for great Blog discussions!

5

Assignment 2

• Goals:

• Continue practicing the tools

• Write a small program

• Open a file, read in text

• Clean up the text and tokenize it

• Count tokens

• Based on simplistic logic, predict whether review is POS
or NEG

• We will cover all of these topics by 04/20

• Today: Conditionals (need to predict POS/NEG)

Published; due April 27

6

Plan for today

• Review:

• Variables and assignment

• New concepts:

• Scope

• Functions

• Control flow

• Methodology:

• Look at concepts first

• Then learn the specific syntax by looking at the code

7

Programming

• Imagine a Robocat

• The Robocat visits Pythonland where there is only one
etnrance called Main

• In the building, there are instructions, a library,
labeled boxes, an “output” window, and a door to
another building called “Sum”.

• Robocat can only follow instructions or go to library

• Labeled boxes can contain things, but things go in
and out only in some cases (assignment)

• Otherwise, Robocat can only copy things labeled
boxes contain

Metaphors

8

Warning/Disclaimer: Metaphors can help but they
can also mislead!

(There may be bugs in metaphors :))

9

Variables

• Variables are locations in memory

• Variables have names

• Values can be stored under those names

• e.g. x = 5

• x is the name, 5 is the value

• Each storage allows only unique names! (e.g. one x)

• Variable names have scope
• Can have more than one x in the same program

• If separate scopes exist, like separate “buildings”/“storages”

• e.g. there are different functions

• Once in a function, the scope is specific to the function

Scope

15

Arguments

• Functions have parameters which are
realized in the form of arguments

• All functions define exactly how many
parameters they have (how many args can
be passed) and in which order they come

• Including the Main function!

• main() has only one argument:

• named argv

• …which happens to be a list (array) of things!

of functions

23

Let’s look at this in VS Code again!
Questions?

36

Main function

• argv is the sole argument of main

• You can’t call it anything else; it’s defined already

• It is a list

• It can be “empty”

• from the programmer’s perspective

• argv[0] is always the program name

• (by convention)

• argv[1], argv[2], etc., won’t exist unless you pass them as
the programmer

• This is what running config is for, in VS Code

• In command line, you pass argumens simply by typing them
after the program name

argv

37

Python interpreter is complaining about
not being provided an argument for main()

main() demo

40

Control flow

• By default, the one on the next line

• But this can change:

• Maybe we call a function

• Maybe we are in a loop

• Maybe we have a conditional statement

• It will only execute if the condition is true

• Relevant example:

• IF condition A is true: Predict POSITIVE review

• ELSE: Predict NEGATIVE

Which statement to execute?

41

http://net-informations.com/python/flow/default.htm

• First, we put whatever we
brought in the argument bag,
into the box labeled argv

Starting a new program!

• First, we put whatever we
brought in the argument bag,
into the box labeled argv

Starting a new program!

• Then, we assign whatever is we
put in argv to the variable x

Starting a new program!

• Then, we assign whatever is we
put in argv to the variable x

Starting a new program!

Control flow

• Then, suppose instruction 1 has a conditional

• A condition can be either true or false

• 5 == 5 is true

• 5 == 3 is false

• 5 != 3 is true

• 5 < 3 is false

• 3 in [1,2,3] is true

• ‘a’ in “apple” is true

• Syntax:

• == means “is (already/currently) equal to

• Note the difference with the assignment operator =

• != means “is not equal to”

• >/< “greater than”/“less than”

• >= “greater or equal to”

• in is a keyword for list membership (strings are lists of characters!)

The If-Else block

• Because x was indeed equal to 5:

• We put 0 into the y-box

• We noted that we will also need
a new variable, z

• And we went on to execute the
next instruction on the
execution path

• We will now never be able to
exectute instruction 3!

Control flow
The If-Else block

• We are done with instructions 2

• We cannot get to instructions 3!

Control Flow
The If-Else block

• Instructions 3 never got
exectuted!

Control Flow
The If-Else block

Control Flow

• Check for a series of conditions,
one by one

• Only ONE of the blocks will be
executed

• (“else if” = “elif”)

• The code in the first block for which
condition is true

• Or, if none of the conditions is true:

• Execute the code in the Else-block

if—elif—elif—elif—else

Control Flow

• Check for a series of conditions,
one by one

• Only ONE of the blocks will be
executed

• (“else if” = “elif”)

• The code in the first block for which
condition is true

• Or, if none of the conditions is true:

• Execute the code in the Else-block

if—elif—elif—elif—else

Control Flow

• Check for a series of conditions,
one by one

• Only ONE of the blocks will be
executed

• (“else if” = “elif”)

• The code in the first block for which
condition is true

• Or, if none of the conditions is true:

• Execute the code in the Else-block

• NB: instructions 2 is “dead code”!

if—elif—elif—elif—else

Control Flow

• Check for a series of conditions,
one by one

• Only ONE of the blocks will be
executed

• (“else if” = “elif”)

• The code in the first block for which
condition is true

• Or, if none of the conditions is true:

• Execute the code in the Else-block

• NB: instructions 2 is “dead code”!

if—elif—elif—elif—else

Control Flow

• Check for a series of conditions,
one by one

• Only ONE of the blocks will be
executed

• (“else if” = “elif”)

• The code in the first block for which
condition is true

• Or, if none of the conditions is true:

• Execute the code in the Else-block

• NB: instructions 2 is “dead code”!

if—elif—elif—elif—else

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Control Flow

• In a series of If-blocks:

• Each if is independent, and ALL
blocks for which condition is true will
be executed.

• Only the LAST if—else is a true if—
else block

• The code in the else block will be
executed only if the condition for the
LAST if is false

• All the other ifs don’t matter for this
last else!

If—if—if—if—(else?)

Boolean logic

• Boolean logic:

• Every statement is either True or False

• Logical operators: AND, OR, NOT

• There is also XOR, not shown in table

• e.g.:

• (5 > 3) AND (5 > 10) is FALSE

• (5 > 3) OR (5 > 10) is TRUE

• (5 > 3) AND (NOT (5 > 10)) is TRUE

• NOT (5 > 10) is TRUE

62

https://en.wikiversity.org/wiki/File:Truth_table_for_AND,_OR,_and_NOT.png

Boolean logic

• Boolean logic:

• Every statement is either True or False

• Logical operators: AND, OR, NOT

• e.g.:

• “It canNOT be [both winter AND summer] (at the
same time)

• translates into:

• At any point of time, [it is NOT winter] OR [it is NOT
summer]

De Morgan’s law

63

https://blog.penjee.com/wp-content/uploads/2016/12/demorgans-law-formula_all.png

The FizzBuzz problem

• This classic problem still is sometimes assigned on real
interviews
• And many programmers still get it wrong!

• Spec:
• Iterate over numbers from 1 to 100.

• If the number is divisible by 3:

• Print “Fizz”

• If the number is divisible by 5:

• Print “Buzz”

• If the number is divisible by both 3 and 5:

• Print “FizzBuzz”

• Otherwise, print the number itself!

• Let’s GO!

Conditionals example

64

https://code.kx.com/q/learn/reading/fizzbuzz/

Addenda

65

Using git

• GitHub is a GUI!

• VS Code also has a GUI for git!

• I also use SourceTree

• Not required for this class

• But it’s pretty good

• Nice visualization

• Try it if you like!

• (It’s additional setup though)

with a GUI

66

Using git

• add, commit, push, pull

• And merge, if required

• Sometimes you can “force push” using
command line when all else fails

• Hopefully no need for that in this class

• But good to know

• Idea: Command line is more powerful when it
comes to git than GUIs

with command line

67

Version control

• If you want to go back to a previous version:

• Recommended for now, in VS Code:

• Install GitLens extension

• Will need to log in GitHub with it

• Use File History to restore the version you want

• Can also do commit history -> reset, for all files

• Also ways to do that in command line

• command line will always work

• But can be more confusing, which command:

• git revert / git reset

• “Revert” destroys the “reverted” commit

• “Reset” resets your working copy to that commit

Going back in time

68

A repository shown in SourceTree software (compatible with git)

Version control

• Keep different development tracks

• With different commits etc.

• A branch can be either:

• abandoned, if the track didn’t work out

• Or merged into main

• Consider:

• Having a branch for each major step of HW

• Merging it into main once satisfied

Branches

69

Branches in SourceTree software (compatible with git)

Using git

• Forgetting to write a commit message in
command line mode will open a command-line
text editor

• These aren’t trivial to exit :)

• By default, git opens the VIM editor

• It can be exited by hitting “:wq”

• You can also merge/resolve conflicts there

• (I’d never do that unless I have to, but some people prefer
them.)

• (Edit files using GUI editors, use command line to commit
and push if necessary or if you find that easier)

with command line

70

