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Takeaways

• Available tools: 

• GUIs: IDEs, text editors 

• Good for most users, especially to write code 

• And to debug 

• Command line 

• Most people don’t like it because it is easy to write a wrong 
command and hard to understand what the problem is 

• Sometimes inevitable 

• More general and powerful than any GUI 

• Version control (via both GUI and command line) 

• Keep track of your development  

• Back up

From April 8
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Version control

• In this class: 

• Focus on storing code and keeping track of changes 

• Use GitHub or VS Code GitLens extension to look at 
diffs 

• If you actually need to go to a previous version: 

• Don’t let it frustrate you and use office hours :) 

• Retreiving previous versions is important 

• But not straightforward :( 

• Some hints at the end of slide deck 

• We will address this as needed

What we need
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Reminders

• Assignment 1 is due tonight 

• Make sure we can map your full name to 
your GitHub username!  

• e.g. put it in README 

• e.g. email the mapping to us 

• “Full name: Mary Carrasco. GitHub: mcar22” 

• If no patas access: 

• Let Olga know asap, including date when you 
requested the access.
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THANKS, EVERYONE, 
for great Blog discussions!
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Assignment 2

• Goals: 

• Continue practicing the tools 

• Write a small program 

• Open a file, read in text 

• Clean up the text and tokenize it 

• Count tokens 

• Based on simplistic logic, predict whether review is POS 
or NEG 

• We will cover all of these topics by 04/20 

• Today: Conditionals (need to predict POS/NEG)

Published; due April 27
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Plan for today

• Review: 

• Variables and assignment 

• New concepts: 

• Scope 

• Functions 

• Control flow 

• Methodology: 

• Look at concepts first 

• Then learn the specific syntax by looking at the code
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Programming 

• Imagine a Robocat 

• The Robocat visits Pythonland where there is only one 
etnrance called Main 

• In the building, there are instructions, a library, 
labeled boxes, an “output” window, and a door to 
another building called “Sum”. 

• Robocat can only follow instructions or go to library 

• Labeled boxes can contain things, but things go in 
and out only in some cases (assignment) 

• Otherwise, Robocat can only copy things labeled 
boxes contain

Metaphors
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Warning/Disclaimer: Metaphors can help but they 
can also mislead! 

(There may be bugs in metaphors :) )
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Variables

• Variables are locations in memory 

• Variables have names 

• Values can be stored under those names 

• e.g. x = 5 

• x is the name, 5 is the value 

• Each storage allows only unique names! (e.g. one x) 

• Variable names have scope 
• Can have more than one x in the same program 

• If separate scopes exist, like separate “buildings”/“storages” 

• e.g. there are different functions 

• Once in a function, the scope is specific to the function

Scope
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Arguments

• Functions have parameters which are 
realized in the form of arguments  

• All functions define exactly how many 
parameters they have (how many args can 
be passed) and in which order they come 

• Including the Main function! 

• main() has only one argument: 

• named argv 

• …which happens to be a list (array) of things!

of functions
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Let’s look at this in VS Code again! 
Questions?
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Main function

• argv is the sole argument of main 

• You can’t call it anything else; it’s defined already 

• It is a list 

• It can be “empty”  

• from the programmer’s perspective 

• argv[0] is always the program name  

• (by convention) 

• argv[1], argv[2], etc., won’t exist unless you pass them as 
the programmer 

• This is what running config is for, in VS Code 

• In command line, you pass argumens simply by typing them 
after the program name

argv
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Python interpreter is complaining about  
not being provided an argument for main()







main() demo
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Control flow

• By default, the one on the next line 

• But this can change: 

• Maybe we call a function 

• Maybe we are in a loop 

• Maybe we have a conditional statement 

• It will only execute if the condition is true 

• Relevant example: 

• IF condition A is true: Predict POSITIVE review 

• ELSE: Predict NEGATIVE

Which statement to execute?
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• First, we put whatever we 
brought in the argument bag, 
into the box labeled argv

Starting a new program!
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• Then, we assign whatever is we 
put in argv to the variable x

Starting a new program!



• Then, we assign whatever is we 
put in argv to the variable x

Starting a new program!



Control flow

• Then, suppose instruction 1 has a conditional


• A condition can be either true or false 

• 5 == 5 is true


• 5 == 3 is false


• 5 != 3 is true


• 5 < 3 is false


• 3 in [1,2,3] is true


• ‘a’ in “apple” is true


• Syntax: 


• == means “is (already/currently) equal to


• Note the difference with the assignment operator = 

• != means “is not equal to”


• >/< “greater than”/“less than”


• >= “greater or equal to”


• in is a keyword for list membership (strings are lists of characters!)

The If-Else block



• Because x was indeed equal to 5:


• We put 0 into the y-box


• We noted that we will also need 
a new variable, z


• And we went on to execute the 
next instruction on the 
execution path


• We will now never be able to 
exectute instruction 3!

Control flow
The If-Else block



• We are done with instructions 2


• We cannot get to instructions 3!

Control Flow
The If-Else block



• Instructions 3 never got 
exectuted!

Control Flow
The If-Else block



Control Flow

• Check for a series of conditions, 
one by one 

• Only ONE of the blocks will be 
executed 

• (“else if” = “elif”) 

• The code in the first block for which 
condition is true 

• Or, if none of the conditions is true: 

• Execute the code in the Else-block

if—elif—elif—elif—else
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Control Flow

• In a series of If-blocks: 

• Each if is independent, and ALL 
blocks for which condition is true will 
be executed. 

• Only the LAST if—else is a true if—
else block 

• The code in the else block will be 
executed only if the condition for the 
LAST if is false 

• All the other ifs don’t matter for this 
last else!

If—if—if—if—(else?)
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Boolean logic

• Boolean logic: 

• Every statement is either True or False 

• Logical operators: AND, OR, NOT 

• There is also XOR, not shown in table 

• e.g.: 

• (5 > 3) AND (5 > 10) is FALSE 

• (5 > 3) OR (5 > 10) is TRUE 

• (5 > 3) AND (NOT (5 > 10)) is TRUE 

• NOT (5 > 10) is TRUE
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https://en.wikiversity.org/wiki/File:Truth_table_for_AND,_OR,_and_NOT.png



Boolean logic

• Boolean logic: 

• Every statement is either True or False 

• Logical operators: AND, OR, NOT 

• e.g.: 

• “It canNOT be [both winter AND summer] (at the 
same time) 

• translates into: 

• At any point of time, [it is NOT winter] OR [it is NOT 
summer]

De Morgan’s law
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https://blog.penjee.com/wp-content/uploads/2016/12/demorgans-law-formula_all.png



The FizzBuzz problem

• This classic problem still is sometimes assigned on real 
interviews 
• And many programmers still get it wrong! 

• Spec: 
• Iterate over numbers from 1 to 100.  

• If the number is divisible by 3: 

• Print “Fizz” 

• If the number is divisible by 5: 

• Print “Buzz” 

• If the number is divisible by both 3 and 5: 

• Print “FizzBuzz” 

• Otherwise, print the number itself! 

• Let’s GO!

Conditionals example
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https://code.kx.com/q/learn/reading/fizzbuzz/



Addenda
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Using git

• GitHub is a GUI!  

• VS Code also has a GUI for git! 

• I also use SourceTree 

• Not required for this class 

• But it’s pretty good 

• Nice visualization 

• Try it if you like! 

• (It’s additional setup though)

with a GUI
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Using git

• add, commit, push, pull 

• And merge, if required 

• Sometimes you can “force push” using 
command line when all else fails 

• Hopefully no need for that in this class 

• But good to know 

• Idea: Command line is more powerful when it 
comes to git than GUIs

with command line
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Version control

• If you want to go back to a previous version: 

• Recommended for now, in VS Code: 

• Install GitLens extension 

• Will need to log in GitHub with it 

• Use File History to restore the version you want 

• Can also do commit history -> reset, for all files 

• Also ways to do that in command line 

• command line will always work 

• But can be more confusing, which command: 

• git revert  / git reset 

• “Revert” destroys the “reverted” commit 

• “Reset” resets your working copy to that commit

Going back in time
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A repository shown in SourceTree software (compatible with git)



Version control

• Keep different development tracks 

• With different commits etc. 

• A branch can be either: 

•  abandoned, if the track didn’t work out 

• Or merged into main 

• Consider:  

• Having a branch for each major step of HW 

• Merging it into main once satisfied

Branches
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Branches in SourceTree software (compatible with git)



Using git

• Forgetting to write a commit message in 
command line mode will open a command-line 
text editor 

• These aren’t trivial to exit :) 

• By default, git opens the VIM editor 

• It can be exited by hitting “:wq” 

• You can also merge/resolve conflicts there 

• (I’d never do that unless I have to, but some people prefer 
them.) 

• (Edit files using GUI editors, use command line to commit 
and push if necessary or if you find that easier)

with command line
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