Computational Methods

for Linguists
Ling 471

Olga Zamaraeva (Instructor)
Yuanhe Tian (TA)
04/13/21

Takeaways
From April 8

« Available tools:
« GUIs: IDEs, text editors

- Good for most users, especially to write code
- And to debug

« Command line

- Most people don't like it because it is easy to write a wrong
command and hard to understand what the problem is

« Sometimes inevitable

- More general and powerful than any GUI

« Version control (via both GUI and command line)

- Keep track of your development

- Back up

Version control

What we need

e |In this class:

» Focus on storing code and keeping track of changes
» Use GitHub or VS Code GitLens extension to look at
diffs
. If you actually need to go to a previous version:
- Don't let it frustrate you and use office hours :)
- Retreiving previous versions is important
« But not straightforward :(

« Some hints at the end of slide deck

« We will address this as needed

Reminders

» Assignment 1is due tonight

- Make sure we can map your full name to
your GitHub username!

e e.g. putitin README

» e.g. email the mapping to us
« “Full name: Mary Carrasco. GitHub: mcar22”
 |f no patas access:

« Let Olga know asap, including date when you
requested the access.

THANKS, EVERYONE,
for great Blog discussions!

Assignment 2
Published; due April 27

» Goals:
» Continue practicing the tools

» Write a small program
« Open afile, read in text
« Clean up the text and tokenize i
» Count tokens

- Based on simplistic logic, predict whether review is POS
or NEG

- We will cover all of these topics by 04/20
« Today: Conditionals (need to predict POS/NEG)

Plan for today

» Review:

 Variables and assignment
« New concepts:

¢ Scope

« Functions

« Control flow

- Methodology:

- Look at concepts first

- Then learn the specific syntax by looking at the code

Programming
Metaphors

- Imagine a Robocat

The Robocat visits Pythonland where there is only one
etnrance called Main

In the building, there are instructions, a library,
labeled boxes, an “output” window, and a door to
another building called “Sum”.

Robocat can only follow instructions or go to library

Labeled boxes can contain things, but things go in
and out only in some cases (assignment)

Otherwise, Robocat can only copy things labeled
boxes contain

_— LI1BRAR
Z:\P‘J‘ (ri ~t l W

N \Mmaw —
TRl
I vl
| —H \

PYTHOU LAV D

Warning/Disclaimer: Metaphors can help but they
can also mislead!
(There may be bugs in metaphors :))

/\
A
A
AA
A
A

Y THO 5 -
LAY D

— 7\()\ LIBQ-A-QZ
S

J print

de: 0
*:C

STORAGE
-E
ouvTeuT i&

Variables

Scope

 Variables are locations in memory

« Variables have names

« Values can be stored under those names

¢ €.9.X=95

« X isthe name, 5 is the value

- Each storage allows only unique names! (e.g. one x)

- Variable names have scope

- Can have more than one x in the same program
. If separate scopes exist, like separate “buildings”/“storages”
- e.g. there are different functions

- Once in a function, the scope is specific to the function

15

PYTHWOU LAV D

Arguments

of functions

» Functions have parameters which are
realized in the form of arguments

 All functions define exactly how many
parameters they have (how many args can
be passed) and in which order they come

» Including the Main function!

- main() has only one argument:
e named argv

- ..which happens to be a list (array) of things!

23

T

SumM

[(vo BRES)
| 2 »A-65 PeR AT C

—)

__

\

guM

—

RIS

MA-\N

WL

)

g

PYTHON LAV D

—
LIB Q-A-QZ

V"l'\'b'a

STDU€£
&ﬁ'é S P 1ICK wy

it

S\AM 3“

BAGS PlcL

SUM

—
LIB Q-A-RZ

?"l'\'b'a

STORA 6L

BAGS PICK yp K C

e N e

L1® Q-A-QZ

V"i '\'E' "

L1® Q-A-QZ

Let’s look at this in VS Code again!
Questions?

Main function

argv

e argv is the sole argument of main

e You can't call it anything else; it's defined already

e |tisalist

e |t can be “empty”

« from the programmer’s perspective

e argv|[O] is always the program name

(by convention)

argv|[1], argv[2], etc., won’t exist unless you pass them as

the programmer

This is what running config is for, in VS Code

In command line, you pass argumens simply by typing them

after the program name

37

guM

LTI =2 %\\‘ t
%z

Traceback (most recent call last):
File "April8-filled.py", line 72, in <module>
main(sys.argv)
File "April8-filled.py", line 61, in main
print(argv[1])
IndexError: list index out of range

Python interpreter is complaining about
not being provided an argument for main()

main() demo

Control flow

Which statement to execute? ! ¢ o
[_< >_J 4<>_ .

» By default, the one on the next line _'Q'_I | 7
‘ ‘

« But this can change:

Selection lteration Sequence

- Maybe we call a function

http://net-informations.com/python/flow/default.htm

- Maybe we are in a loop

- Maybe we have a conditional statement
. |t will only execute if the condition is true

+ Relevant example:
IF condition A is true: Predict POSITIVE review
e ELSE: Predict NEGATIVE

41

Starting a new program!

* First, we put whatever we
brought in the argument bag,
iInto the box labeled argv

Starting a new program!

* First, we put whatever we
brought in the argument bag,
iInto the box labeled argv

Starting a new program!

 Then, we assign whatever is we
put in argv to the variable x

Starting a new program!

 Then, we assign whatever is we
put in argv to the variable x

Control flow
The If-Else block

* Then, suppose instruction 1 has a conditional
* A condition can be either true or false
e 5==5Iistrue

5==3 s false

51=3 is true

5 < 3 is false

3in[1,2,3] is true

‘a’ in “apple” is true
» Syntax:
== means “is (already/currently) equal to
* Note the difference with the assignment operator =
* I=means “is not equal to”
* >/< “greater than”/“less than”
e >= “greater or equal to”

* inis a keyword for list membership (strings are lists of characters!)

Control flow
The If-Else block

 Because x was indeed equal to 5:
 We put 0 into the y-box

e \We noted that we will also need
a hew variable, z

e And we went on to execute the
next instruction on the
execution path

e We will now never be able to
exectute instruction 3!

Control Flow
The If-Else block

e We are done with instructions 2

 We cannot get to instructions 3!

Control Flow
The If-Else block

* |nstructions 3 never got
exectuted!

Control Flow

if—elif—elif—elif—else

« Check for a series of conditions,
one by one

« Only ONE of the blocks will be
executed

- (“else if” = “elif”)

« The code in the first block for which
condition is true

« Or, if none of the conditions is true:

« Execute the code in the Else-block

Control Flow

if—elif—elif—elif—else

« Check for a series of conditions,
one by one

« Only ONE of the blocks will be
executed

- (“else if” = “elif”)

« The code in the first block for which
condition is true

« Or, if none of the conditions is true:

« Execute the code in the Else-block

Control Flow

if—elif—elif—elif—else

« Check for a series of conditions,
one by one

« Only ONE of the blocks will be
executed

- (“else if” = “elif”)

« The code in the first block for which
condition is true

« Or, if none of the conditions is true:
« Execute the code in the Else-block

« NB: instructions 2 is “dead code”!

Control Flow

if—elif—elif—elif—else

« Check for a series of conditions,
one by one

« Only ONE of the blocks will be
executed

- (“else if” = “elif”)

« The code in the first block for which
condition is true

« Or, if none of the conditions is true:
« Execute the code in the Else-block

« NB: instructions 2 is “dead code”!

Control Flow

if—elif—elif—elif—else

« Check for a series of conditions,
one by one

« Only ONE of the blocks will be
executed

- (“else if” = “elif”)

« The code in the first block for which
condition is true

« Or, if none of the conditions is true:
« Execute the code in the Else-block

« NB: instructions 2 is “dead code”!

Control Flow
If—if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Control Flow
If—if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Control Flow
If —if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Control Flow !

If—if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Control Flow !

If—if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Control Flow !

If—if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Control Flow !

If—if—if—if—(else?)

e |In a series of If-blocks:

- Each if is independent, and ALL
blocks for which condition is true will
be executed.

« Only the LAST if—else is a true if—
else block

« The code in the else block will be

executed only if the condition for the
LAST if is false

« All the other ifs don’t matter for this
last else!

Boolean logic

- Boolean logic:

» Every statement is either True or False

» Logical operators: AND, OR, NOT

There is also XOR, not shown in table

e €.0.:

(5>3) AND (5>10) is FALSE

(5>3)OR(5>10) is TRUE

(5> 3) AND (NOT (5 > 10)) is TRUE
NOT (5 > 10) is TRUE

62

A B AANDB | AORB | NOTA
False False | False False True
False True False True True
True False | False True False
True True True True False

https://en.wikiversi

ty.org/wiki/File:Truth_table_for_ AND, OR,_and_NOT.png

Boolean logic

De Morgan’s law

. n(i\tﬁ(A B) — notAornotB
- Boolean logic:

- Every statement is either True or False N0t (Aork) = notAand not B

» Logical operators: AND, OR, NOT

¢ e.g.: not (Aand B) 2 notA not B

i “ It Ca n N OT be [bOt h Wi nter A N D S u m m e r] (at th e https://blog.penjee.com/wp-content/uploads/2016/12/demorgans-law-formula_all.png
same time)

« translates into:

- At any point of time, [it is NOT winter] OR [it is NOT
summer]

63

The FizzBuzz problem
Conditionals example

 This classic problem still is sometimes assigned on real

o many rorammers il e o PO HOPHE
TERY PEYE

« |terate over numbers from 1 to 100.

. If the number is divisible by 3: O P ® @ @ . C:

Print “Fizz”

e Print “Buzz”

 |If the number is divisible by both 3 and 5:

https://code.kx.com/qg/learn/reading/fizzbuzz/

e Print “FizzBuzz”

- Otherwise, print the number itself!

e Let's GO

64

Using git

with a GUI

» GitHub is a GUI!
« VS Code also has a GUI for git!

| also use SourceTree

« Not required for this class
- But it’s pretty good
« Nice visualization

« Try itif you like!

 (It's additional setup though)

O ® 471-student-test (Git)
vu @ @ :
* =)) v
View Commit Checkout Reset Stash Add Remove Add/Remove Fetch Pull Push Branch Merge
FILE STATUS All Branches Show Remote Branches Ancestor Order
@ Working Copy Graph Description Commit
[‘Ty originlmain][ﬁ> origin/HEAD][@ main] Added empty python file for April13 demo aad32de
ERaNCTES Merge branch 'main' of https://github.com/olzama/47 1-student-test into main c66060d
%3 s Modified the first print statement. a611d36
TAGS Uncommented print statement 583c0cc
Adding python demo file for April 8 lecture. f28b576
REMNTES] Update README.md ec4dcae
Show / hide sidebar . .
gty first commit. 87b9966
Initial commit 745fac2
STASHES
Sorted by path —
SUBMODULES
@) April13.py
SUBTREES @

B U

Show in Finder Git Flow Terminal

Jump to:

Author

Olga Zamaraeva...

Olga Zamaraeva <...
Olga Zamaraeva <...
Olga Zamaraeva <...
Olga Zamaraeva <...
Olga Zamaraeva <...
Olga Zamaraeva <...

Olga Zamaraeva <...

Q

66

Date

Apr 6, 2021 at...
Apr 6, 2021 at 2:...
Apr 6, 2021 at 2:...
Apr 6, 2021 at 2:...
Apr 6, 2021 at 1:...
Mar 22, 2021 at...
Mar 22, 2021 at...
Mar 22, 2021 at...

L v

SR e — St L

(base) Murkinlé:471-student-test olzama$ touch Aprilil3.py

O [_
In I (base) Murkinlé:471-student-test olzama$ git add Aprili3.py
(base) Murkinlé:471-student-test olzama$ git commit -m "Added empty python file for Aprill3 demo"

[main aad32de] Added empty python file for Aprill3 demo

° ° 1 file changed, © insertions(+), @ deletions(-)
Wlth COm ma nd Ilne create mode 100644 Aprilil3.py
(base) Murkinlé:471-student-test olzama$ git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 12 threads
Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 287 bytes | 287.00 KiB/s, done.
Total 3 (delta 1), reused @ (delta 9)

® add COm mit USh u ” remote: Resolving deltas: 100% (1/1), completed with 1 local object.
/ / p / p To https://github.com/olzama/471-student-test.git
c66060d..aad32de main -> main
(base) Murkinlé:471-student-test olzama$ ||

- And merge, if required

» Sometimes you can “force push” using
command line when all else fails

« Hopefully no need for that in this class

« But good to know

« |dea: Command line is more powerful when it
comes to git than GUIs

6/

Version control

Going back in time

. If you want to go back to a previous version:

- Recommended for now, in VS Code:
['{‘y origin/site-live][%> site-live] no message 3669e15

® ° I [2 Zamaraeva-dissertation] Accidentally had removed the wh-only option from the questionnaire. 8a089d3

o I N Sta I I Gltl.ens eXtenSIOn @) [@ origin/trunk][ﬁ> origin/HEAD][GE> trunk] Merge pull request #581 from delph-in/olzama-dev 052f1e2
o [‘{f origin/olzama-dev][‘{;D oIzama-dev] Particles are complementizers, so this constraint will lead to a broken gram... 1ddbbOa

. ° . . . o Accidentally removed questionnaire option. 423b3fe

* WI | | need to Iog In G ItH u b Wlth It [®) Non-head daughter of wh-ques-phrase should be SLASH and REL-empty. Russian test needs to be updated, three... 8cc979f

I Issue #580 a7b6f19
. . M Merge pull request #5672 from delph-in/olzama-dev 52317856

- Use File History to restore the version you want N sl el
I [7 ecc-thesis] Merge pull request #563 from delph-in/escape-char aadb1d9

Merae nuill reauest #566 from delnh-in/ecc-coord-bua daearfNR

- Can also do commit history -> reset, for all files

+ Also ways to do that in command line A repository shown in SourceTree software (compatible with git)
- command line will always work
« But can be more confusing, which command:

- gitrevert / git reset
« “Revert” destroys the “reverted” commit

“Reset” resets your working copy to that commit

68

Version control

Branches

- Keep different development tracks

« With different commits etc.

« A branch can be either:

« abandoned, if the track didn’t work out

» Or merged into main

« Consider:

« Having a branch for each major step of HW

» Merging it into main once satisfied

69

Description

[‘{;9 origin/site-live][%i> site-live] no message

[2 Zamaraeva-dissertation] Accidentally had removed the wh-only option from the questionnaire.
[ﬁﬁ origin/trunk][ﬁ> origin/HEAD][@ trunk] Merge pull request #581 from delph-in/olzama-dev

[‘{f origin/olzama-dev)['x_&D oIzama-dev] Particles are complementizers, so this constraint will lead to a broken gram...

Accidentally removed questionnaire option.

Non-head daughter of wh-ques-phrase should be SLASH and REL-empty. Russian test needs to be updated, three...
Issue #580

Merge pull request #5672 from delph-in/olzama-dev

Merge branch 'trunk' into olzama-dev

[7 ecc-thesis] Merge pull request #563 from delph-in/escape-char
Merae nuill reauest #566 from delnh-in/ece-coord-bhua

Branches in SourceTree software (compatible with git)

Commit

3669e15
8a089d3
052f1e2
1ddbbOa
423b3fe
8cc979f
a7b6f19
52311785
e5bd1d1

aadb1d9
daarfNR

Using git

with command line

« Forgetting to write a commit message In
command line mode will open a command-line
text editor

- These aren't trivial to exit :)
- By default, git opens the VIM editor
It can be exited by hitting “:wq”

« You can also merge/resolve conflicts there

« (I'd never do that unless | have to, but some people prefer
them.)

. (Edit files using GUI editors, use command line to commit
and push if necessary or if you find that easier)

70

Git 2.31.1 Setup

Choosing the default editor used by Git
Which editor would you like Git to use?

Use Vim (the ubiquitous text editor) as Git's default editor

The Vim editor, while powerful, can be hard to use. Its user interface is

unintuitive and its key bindings are awkward.

Note: Vim is the default editor of Git for Windows only for historical reasons, and

it is highly recommended to switch to a modern GUI editor instead.

Note: This will leave the 'core.editor' option unset, which will make Git fall back

to the 'EDITOR' environment variable. The default editor is Vim - but you

may set it to some other editor of your choice.

Back Next

Cancel

