Computational Methods for Linguists Ling 471

Olga Zamaraeva (Instructor) Yuanhe Tian (TA) 04/22/21

1

Reminders

- Respond to Blog 2
- Assignment 2 due April 27

Plan for today

- Text processing, continued:
 - NLTK module and its tokenizer
 - Modules setup, PYTHONPATH
 - Unicode
- New topic: Evaluation
 - Metrics
 - Accuracy ●
 - Precision and recall (time permitting, or next week)

Tokenization

- In Assignment 2:
 - We will simply split words by space
 - ...to make sure we can call string functions
- In real life:
 - Always use an off-the-shelf tokenizer **package**
 - e.g. NLTK module
 - ...which needs to be **installed** via **pip**
 - **pip** is an autoinstalled included in your python

NLTK tokenizer demo

Finding modules

- Keep modules **neatly** separately
- Add the path to the **folder** from which you want to be able to import a module to PYTHONPATH
 - **PYTHONPATH**: a list of paths for python interpreter ulletto look for modules in
- Automatic installers will often add the path when installing
 - e.g. **pip**
 - ...but not always. Then, need to **locate** the installed package **folder** and add its path to PYTHONPATH

export PYTHONPATH="\${PYTHONPATH}:/path/to/your/project/"

* For Windows set PYTHONPATH=%PYTHONPATH%;C:\path\to\your\project\

Commands to add a project to Pyhonpath, in bach/batch This is to be executed in command line, or to be added to e.g. bash_profile

https://towardsdatascience.com/how-to-fix-modulenotfounderror-and-importerror-248ce5b69b1c

Adding to PYTHONPATH in VS Code is confusing. Only do it if really needed. There are alternatives; VS Code is good for debugging, not generally running projects!

Adding to PYTHONPATH

- In VS Code: ullet
 - For **debugging** mode: **launch.json** and **.env** ullet
 - For non-debugging mode: **settings.json** ullet
 - **find** settings.json with command+shift+P
 - All files go under your **.vscode** directory ullet
 - see uploaded files on website for reference ullet
- If just using command line:
 - PYTHONPATH=newpath:\$PYTHONPATH ullet
 - on Windows: ullet
 - PYTHONPATH=newpath;\$PYTHONPATH

export PYTHONPATH="\${PYTHONPATH}:/path/to/your/project/"

* For Windows set PYTHONPATH=%PYTHONPATH%;C:\path\to\your\project\

Commands to add a project to Pyhonpath, in bach/batch This is to be executed in command line, or to be added to e.g. bash_profile

Modules demo

Encodings and the Unicode

- The computer stores everything as numbers
 - including characters

- The computer stores everything as numbers
 - including characters

- The computer stores everything as numbers
 - including characters

- The computer stores everything as numbers
 - including characters

- The computer stores everything as numbers
 - including characters

- The computer stores everything as numbers
 - including characters
- What's output is a **picture**
 - pictures take **a lot** of space
 - are difficult to compare
 - so you invoke the actual picture as little as possible

- Needed a convention for operating systems, graphical adapters, etc.
 - which number to map each character to
- ASCII:
 - American Standard Code for Information
 Interchange
 - Widely used until recently
 - python2
 - Allows only for 127 characters on most operating systems
 - whatever doesn't fit is rendered as <?>
 - Why? To save **space** (prioritizing English)

Unicode consortium

- Catalogue all known characters and assign numbers to them
 - Obviously, will need a lot more numbers than 127
 - e.g. **'a'**: 0061
 - 97 in decimal notation
 - e.g. 😀: 1F600
 - 128512 in decimal notation
- The catalogue keeps growing!

Non-ASCII characters in ASCII systems

- There is only 127 possible chars
 - Everything else is simply output as a special char <?>
 - e.g. in **python2**
 - need to explicitly change encoding
 - open(filename,'r', encoding ='utf8')

Unicode support in python3

- **Enough** space reserved for **all** characters
 - ...at least the ones currently catalogued!
- **No need** to worry to much about different encodings
 - ...but only because most files are currently saved as unicode!
 - may **still** need to be **aware** of encodings, particularly ascii
 - ...to open files **correctly**

Evaluation in data science and NLP

Evaluation in computational fields

- Computational approaches:
 - Allow for **numeric** evaluation
 - ...and for system **comparison**
 - ...and for feedback on system changes
- Computational fields are often defined by evaluation
 - what they do is driven by evaluation scores on **concrete** datasets

Evaluation in machine learning

- Machine learning:
 - Algorithm **trains** on labeled data points
 - To evaluate:
 - need **unseen** data points •
- **Train**/Dev/**Test split** in datasets
 - Dev: to **tune** various parameters
- Does it ever make sense to evaluate on Train?
 - Yes! But very carefully :)

A picture from Carlos Guestrin's lecture on ML

Evaluating without a train/test split

- Sometimes there isn't enough data
- Cross-validation:
 - reserve 1 (or a few) data points in each iteration of training
 - at every iteration, the evaluation is then done on small heldout data
- Also:
 - Sometimes you are not really training!
 - e.g. Assignment 2–3, "simplistic prediction"
 - Any training happening there? •
 - Does the next prediction depend on the previous ones?) •
 - ?

5-fold CV			DATASE	Γ	
Estimation 1	Test	Train	Train	Train	Train
Estimation 2	Train	Test	Train	Train	Train
Estimation 3	Train	Train	Test	Train	Train
Estimation 4	Train	Train	Train	Test	Train
Estimation 5	Train	Train	Train	Train	Test

subscription.packtpub.com/book/big data and business intelligence/9781789617740/2/ch02lvl1sec14/k-fold-cross-validation

Evaluating without a train/test split

- Sometimes there isn't enough data
- Cross-validation:
 - reserve 1 (or a few) data points in each iteration of training
 - at every iteration, the evaluation is then done on small heldout data
- Also:
 - Sometimes you are not really training!
 - e.g. Assignment 2–3, "simplistic prediction"
 - Any training happening there? ullet
 - Does the next prediction depend on the previous ones?) \bullet
 - No! "Simplistic prediction" is a **symbolic** method (logic)

5-fold CV			DATASE	Γ	
Estimation	1 Test	Train	Train	Train	Train
Estimation	2 Train	Test	Train	Train	Train
Estimation	3 Train	Train	Test	Train	Train
Estimation	4 Train	Train	Train	Test	Train
Estimation	5 Train	Train	Train	Train	Test

ubscription.packtpub.com/book/big data and business intelligence/9781789617740/2/ch02lvl1sec14/k-fold-cross-validation

Evaluation in NLP/data science

- NLP is defined/driven by evaluation
- Benchmarks:
 - Classic datasets
 - e.g. the Wall Street Journal
 - Systems are compared based on how well they do on the same dataset(s)
- Makes sense?

The WSJ effect

- Years of retraining systems on WSJ
 - enshrined certain biases in NLP
 - ...but also, led to systems **adapting** to the **test** portion of WSJ
 - even though the train/test division in the dataset • was observed!
 - So, not only we are biased towards WSJ, but we aren't even sure what our numbers mean

https://hch19.cl.uni-heidelberg.de/program/slides/l/HCH19_lecture_Dirk_Hovy.pdf

- A "starting point" for **comparison**
 - What you want to "beat", in your experiment •
 - e.g. 0
 - e.g. random/**chance** performance \bullet
 - e.g. most **common** value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. **least restrictive** value
 - free word order in grammar inference setting
 - e.g. an **older** system/algorithm/model \bullet
 - e.g. a **basic** pipeline/architecture
 - then **add** a module to it, see if performance **changes**

https://www.researchgate.net/figure/Bootstrapped-distribution-of-performance-for-cluster-pairings-Human-auto-random fig4 341893966

A chain is as strong as its weakest link

https://blog.ml.cmu.edu/2020/08/31/3-baselines/

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

experiment

Grain a Main al

- A "starting point" for comparison
 - What you want to "beat", in your experiment
 - e.g. 0
 - e.g. random/chance performance
 - e.g. most common value
 - e.g., predict word order in an unknown language is SOV :).
 - e.g. an older system/algorithm/model
 - e.g. a basic pipeline/architecture
 - then add a module to it, see if performance changes

B.7	
6. 50% e.	
data	

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

https://medium.com/@metalscom/the-history-of-the-gold-standard-in-the-united-states-6556229954e2

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

- Labels treated as correct in evaluation
 - E.g. labels provided with the IMDB dataset

Baseline LOSI

Questions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

- Intrincic:
 - How well the system does based on its own criteria
 - e.g. How well does our system predict movie review labels?
- Extrinsic:
 - Does the system improve the performance of some other system down the pipeline?
 - e.g.: With our system added, does another system which makes movie suggestions lead to more users clicking on/watching the suggestions?

Evaluation drives NLP

- ... is to say:
 - people are happy about incremental improvements
 - ...and they **design** experiments so as to obtain those
 - ...and they sometimes worry less about whether the numbers are meaningful
- Data science tries to make sense of the numbers

Please consider filling out the survey: https://canvas.uw.edu/courses/1465777/quizzes/ 1435948