Computational Methods for Linguists Ling 471

Olga Zamaraeva (Instructor) Yuanhe Tian (TA) 04/29/21

1

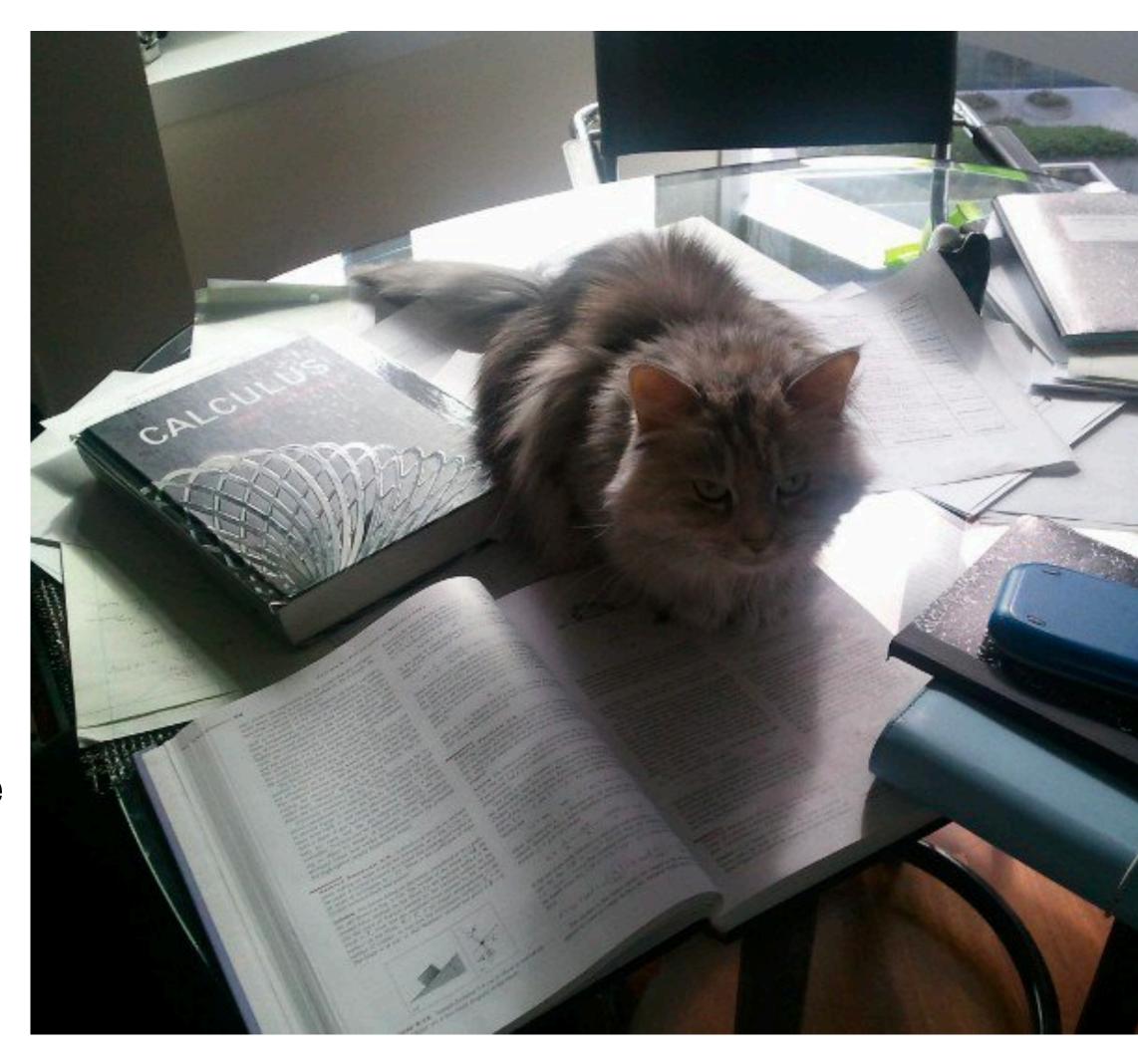
Reminders

- Make sure to create **private** repository copies for the assignments
 - I was **mistaken** to think forks were private
 - You can **delete** your forked copies if you like
- Can clone and copy manually, or use import
- Whichever way you choose, please do not publish any solutions to the HW anywhere
- Assignment 3:
 - a "short" description **and** a detailed **walkthrough** available
 - ... is **harder** than Assignment 2
- Please fill out Midterm Course Evaluations!

Questions?

Plan for today

- Data science and probability:
 - what's the **connection**?
- Probability theory **basics**
- Statistics: **distributions** and **estimation**
 - time-permitting
- Some of today's and next week's material may be **dense**
 - Goal: Learn **something** about those things
 - Remember, no exams :)
 - Unlikely to ask you to compute something terrible in HW
 - If this is the **first** time you hear about these things:
 - You will understand them better **next** time you hear about them



Probability and Statistics

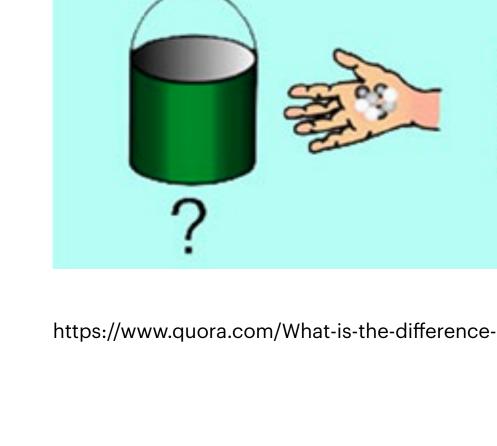
Data science and statistics

- There is a lot of **randomness** and **uncertainty** in the world
- Many processes in our lives are **data-generating**
 - how many times we click on what
 - how many messages we send/receive, of what kind
 - what places we visit and how often
 - etc., etc., etc.
- Statistics:
 - A **science** of making sense of the world by **sampling** data
 - What is true for the sample, is also true for the population
 - ... if the sample is **random** and sufficiently **large**

https://www.scribbr.com/methodology/population-vs-sample/

Statistics and Probability Theory (and Data Science)

- Probability Theory:
 - Formally estimate how likely an **outcome** is
 - Informally: Oriented at predicting **future** events
 - Given what I know about the population, what sample could I draw?
 - Relies on the notion of probability **distribution**
 - How are probabilities of **all** possible outcomes **distributed**?
- Statistics:
 - Use **probability distributions** to make sense of large data **formally**
 - Informally: Oriented at analyzing **past** events
 - Given the samples which I drew, what can I say about the population?
 - No distribution => no statistics!
- Data Science:
 - Probability + Statistics
 - Analyze past events **and** predict future events, **at scale**, in real world



Statistics: Given the information in your hand, what is in the pail?

Probability: Given the

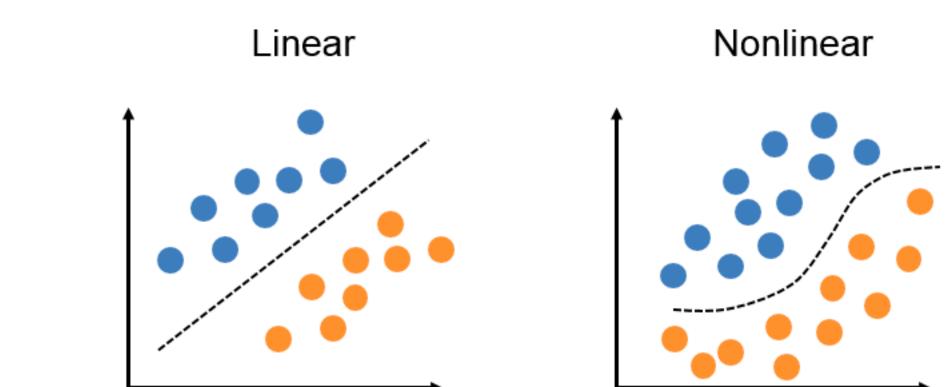
information in the pail,

what is in your hand?

https://www.quora.com/What-is-the-difference-between-probability-and-statistics

Prediction and Probabilities classification problem

- Predictions in data science and ML need to be quantified
- To predict whether a review is POS or NEG:
 - e.g. compute the **probability** of it being POS
 - predict POS if that probability is high
 - predict NEG otherwise
- **Conditional** probability: P(Y|X)
 - where Y is the label and X is the observation
 - e.g. Y = POS and X = "this is a good movie!"
 - **How** to learn P(Y|X)? lacksquare
 - There are mathematical functions which you can use
 - A bit more in our ML-dedicated lectures later...



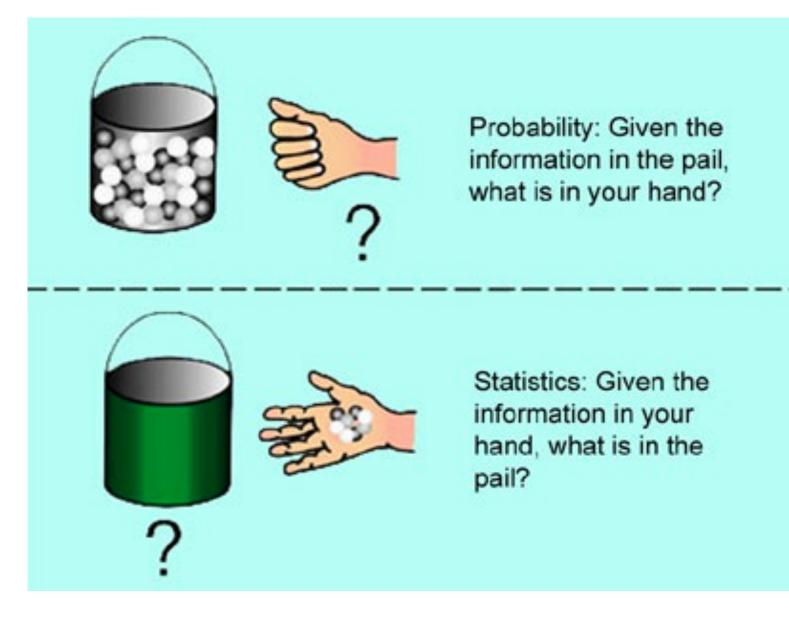
https://jtsulliv.github.io/perceptron/

Probability Theory

- ...is notoriously unintuitive and hard
- Our goal:
 - get familiar with a **subset** of basic concepts
 - not necessarily in the most formal and exhaustive way
 - ...such that we can experiment with some data science models in assignments 4–5

Probability Theory our goals for this lesson

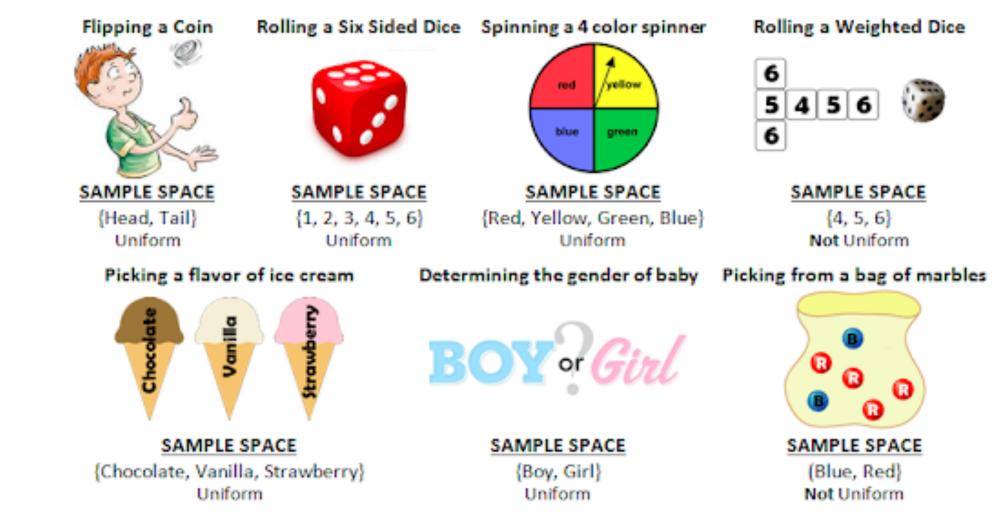
- Definitions:
 - events, outcomes, sample space, random variable ullet
- Mutually exclusive events
- Sequences and independent events
- Joint probabilities
- Conditional probability
- Marginalizing joint probabilities
- Bonus: Maximum Likelihood Estimation



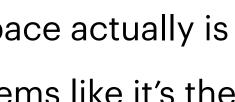
https://www.quora.com/What-is-the-difference-between-probability-and-statistics

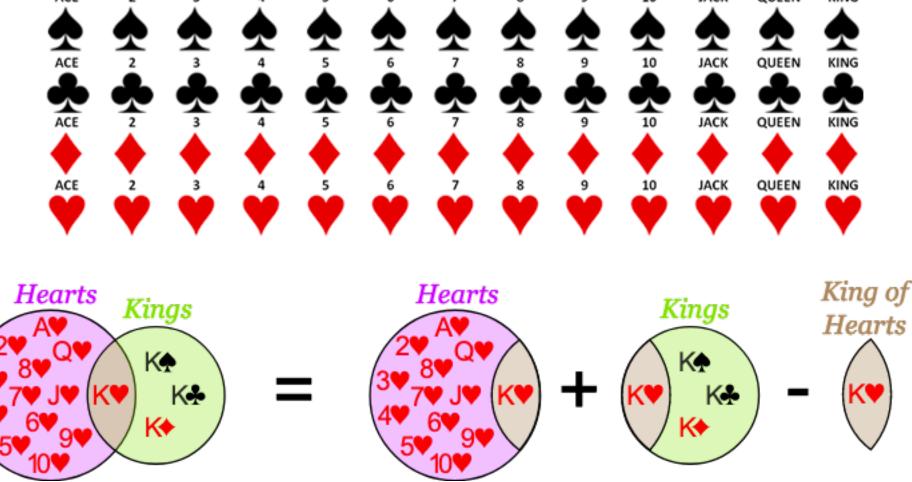
Probability basic intuitions

- How likely is something to happen?
 - Well, we don't know!
 - But, we can **estimate**
 - based on **prior observations** or base on what we **assume** about the situation
- Out of n experiments (the "sample space"), how many resulted in a **specific** outcome?
 - this ratio is the **probability** of that specific outcome
 - turns out, you can show formally that it **is** the ratio (MLE)
 - Understanding what the "sample space" is exactly is crucial
 - The probability will be different based on what the sample space actually is
 - Often times, need to subtract things from what intuitively seems like it's the sample space
 - particularly conditional probabilities ٠
 - That's the main reason why probability is often unintuitive



http://www.geometrycommoncore.com/content/unit6/gcp1/studentsnotes1.html

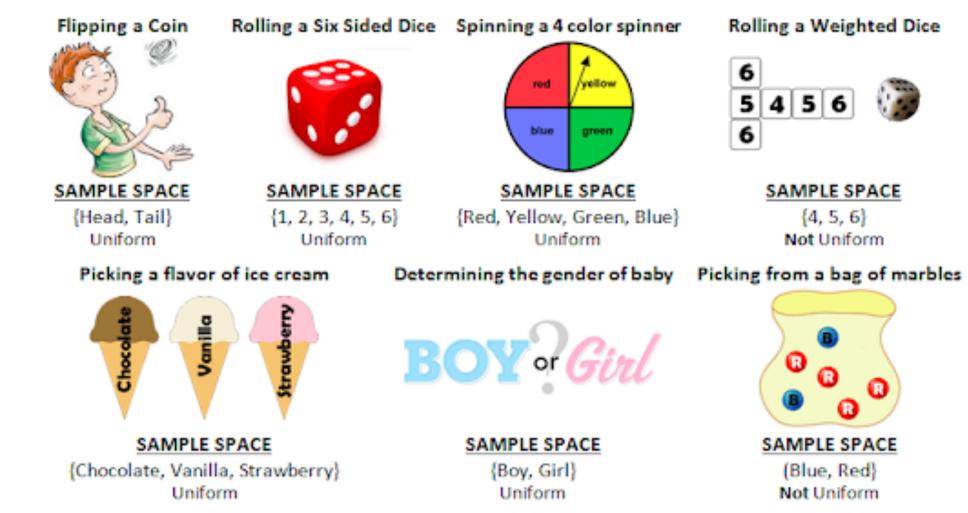




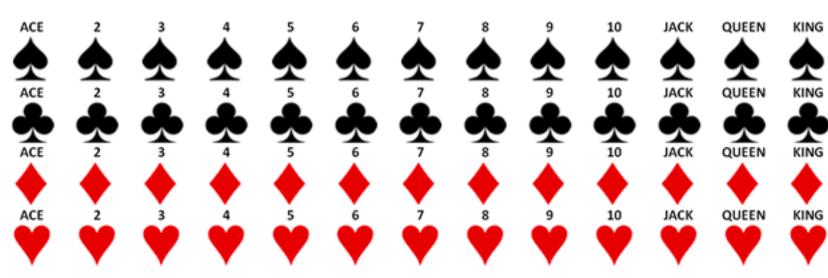
https://www.mathsisfun.com/data/probability-events-mutually-exclusive.html

Coin toss the classic probability example

- Sample space
- Experiment
- Outcome \bullet



http://www.geometrycommoncore.com/content/unit6/gcp1/studentsnotes1.html



Coin toss the classic probability example

- Sample space
 - {T,H}
- Experiment
 - one toss \bullet
- Outcome
 - either H or T

http://www.geometrycommoncore.com/content/unit6/gcp1/studentsnotes1.html

Coin toss series the classic probability example

- Sample space
 - **depends** on the number of tosses
 - for **2**: {HH, HT, TH, TT}
- Experiment
 - A number of tosses
- Outcome
 - A **sequence** of Hs and Ts
- Statistically, the P(H) is estimated by a large number of experiments
 - toss the coin a billion times
 - compute how many H you got (N)
 - **N/billion** is the statistical/empirical estimate of **P(H)**
 - and you can actually **prove it formally**
 - Maximum Likelihood Estimation (MLE)

A Fair Coin

- A fair coin is a coin such that P(H) = 1/2 In other words, you can toss it a billion times and expect H to come up ~500 mln times
 - what if I actually did it and got 500,000,001 Heads?
 - 500,000,001/1,000,000,000 = 0.500000001
 - for all practical purposes, that's still 1/2 :)

Probability and Frequency

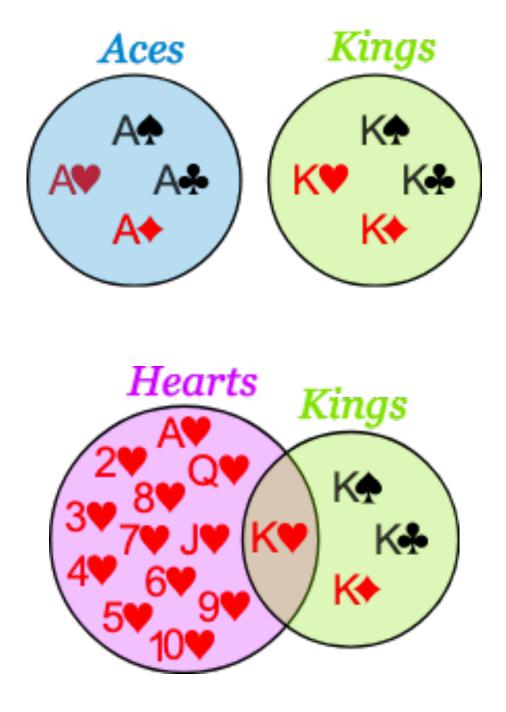
- How probable is some outcome?
 - e.g. H or T
- How frequent is some outcome?
 - e.g. H or T
- What's the difference?
 - Frequency is observed
 - Probability is estimated

Probability of sequence in NLP

- Very important in data science and NLP!
 - ...because, we usually deal with **many** events
 - ...because, **texts** are **sequences** :) ullet
 - ...of words, characters, syllables, sentences, paragraphs...
 - language modeling: ullet
 - estimating probabilities of textual sequences ullet
 - given what we've seen before, what is the **most likely** continuation?

"Probabilities sum to 1" ...for mutually exclusive events

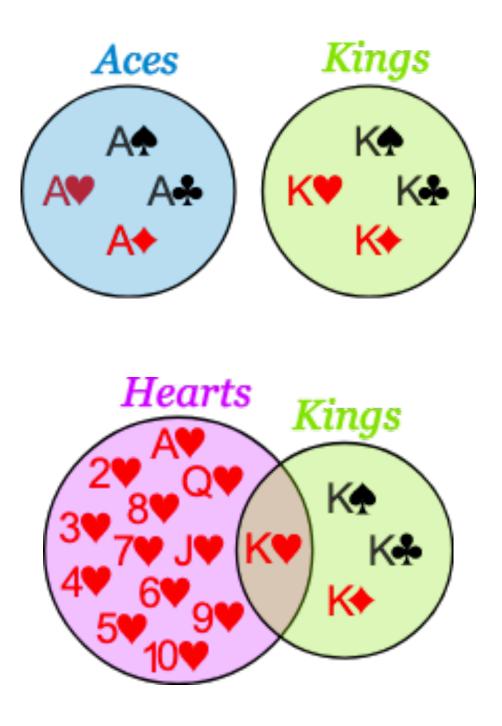
- Why? What does that mean?
 - This refers not to any set of probabilities but only to those which account for **all possible outcomes** in a specific setting
 - Just a convention/definition
 - = 100% \bullet
 - Consider all possible outcomes in the **coin toss** setting \bullet
 - e.g. {H,T}
 - when you toss a coin, it **must** result in H or T
 - ...There is a 100% probability that ONE of the possible outcomes • will be observed
 - Notation: P(H) + P(T) = 1



https://www.mathsisfun.com/data/probability-events-mutually-exclusive.html

Mutually exclusive events

- e.g. H and T in a coin toss
 - P (H and T) = 0
 - for one coin toss
- e.g. P(King and Ace) = 0
 - if drawing **one** card
- but: P(King and Hearts) > 0



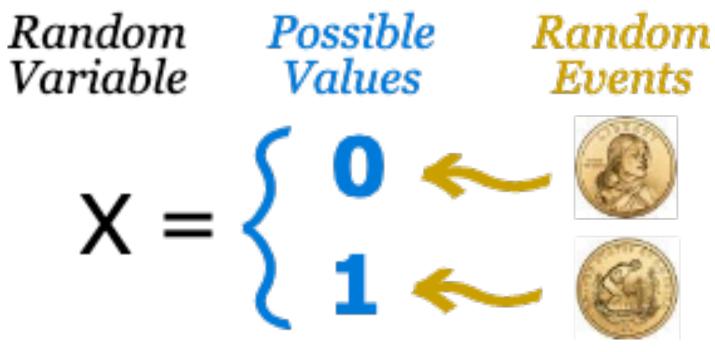
https://www.mathsisfun.com/data/probability-events-mutually-exclusive.html

Probability of sequence of independent events

- Suppose you toss a fair coin twice
- What's the sample space?
 - {HH, HT, TT, TH}
- What's P(HH)?
 - 1/4
 - observe: this is P(H) * P(H)
 - Probability of a sequence is a **product**
- What's P(HT, in this order)?
 - 1/4
- What's P of getting one H and one T, any order?
 - 1/2
 - observe: this is P(HT) + P(TH)!
 - you want to estimate the P of getting one OR the other!
 - Probability of a disjunction is a **sum**

Random variables

- Set of possible values from a probabilistic experiment
 - e.g. {H, T}
 - we can call H=1 and T=0, or any other arbitrary value!
 - the point is, there is two of them and they are mutually exclusive
- Potentially confusing:
 - What do people mean when saying P(X) or P(A)?
 - it depends, but most often they mean:
 - if A is a random variable and the values are e.g. {1,2,3,4,5,6}
 - then P(A) may refer specifically to P(A=1) or P(A=5)



https://www.mathsisfun.com/data/random-variables.html

Independent events

- One event does not affect the other
 - e.g. coin toss/die roll etc.
- $P(A \text{ and } B) = P(A)^* P(B)$ only if A and B are independent

- P(1)?
- P(2)?

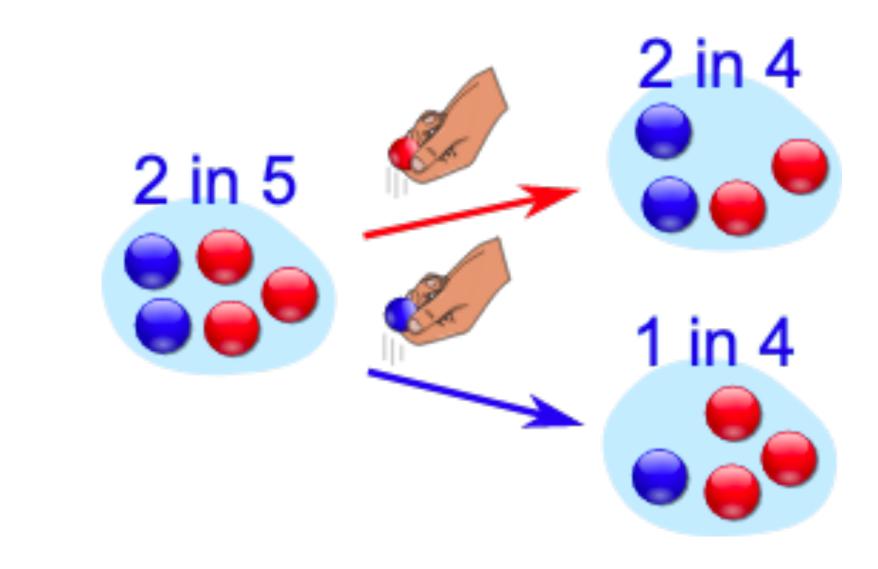
Independent events

- One event does not affect the other
 - e.g. coin toss/die roll etc.
- $P(A \text{ and } B) = P(A)^* P(B)$ only if A and B are independent

- P(1) = 1/1024
- P(2) = 1/1024
 - whaaaat?! ullet
- This is unintuitive, because we were not • comparing P(1) to P(2)
 - we were comparing P(1) with • something more like 1 - P(1)

Conditional probability

- What's the probability of A given B?
 - e.g., if it is very sunny, is it more or less likely that it will rain in 30 minutes?
 - (compared to when it is **not** sunny)
 - e.g. if you see lightning, is it more or less likely that you hear thunder in a few seconds?
 - (compared to when you **don't** see a lightning)
 - Formal example: removing marbles from a bag
 - consider the **sample space**

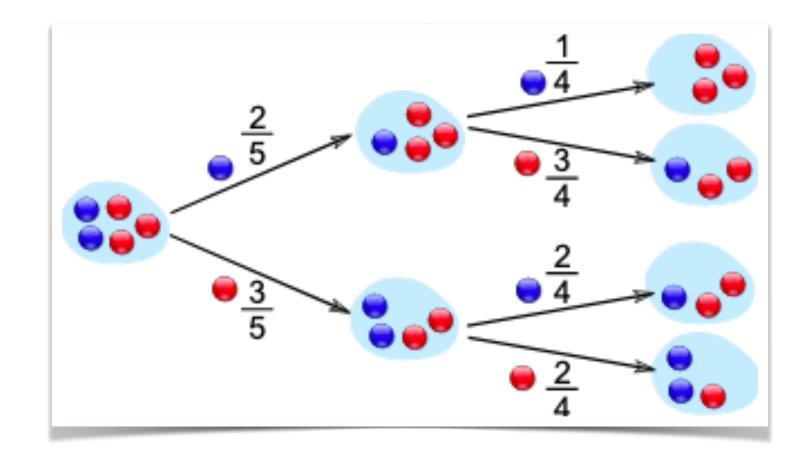


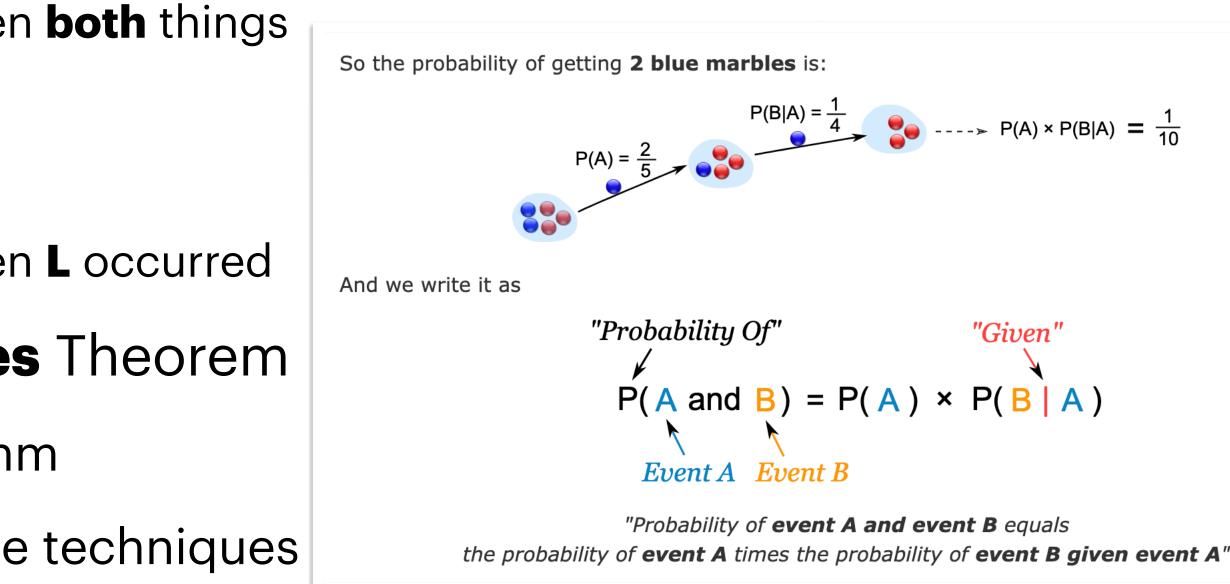
D: ess likely

https://www.mathsisfun.com/data/probability-events-conditional.html

Conditional probability definition

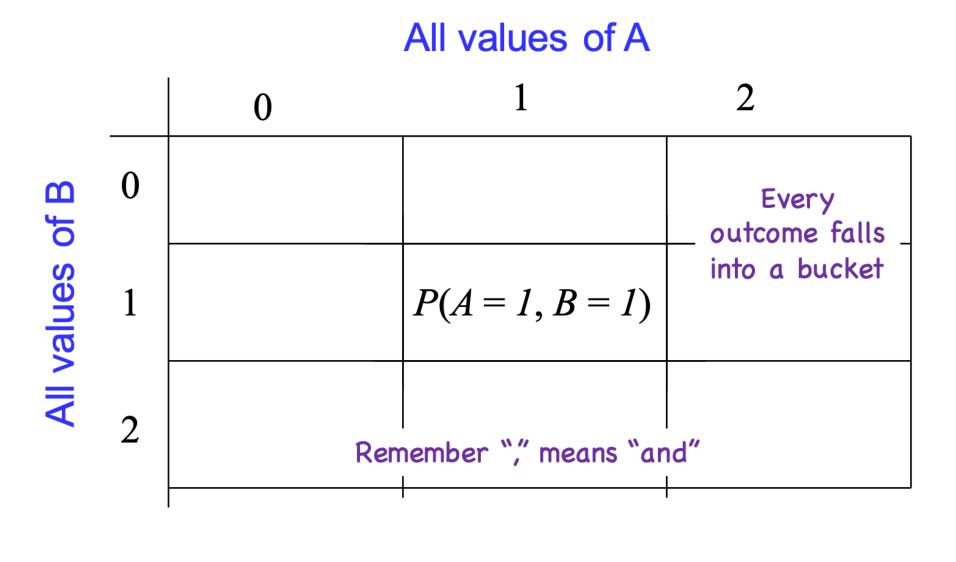
- P(thunder | ligntning) = P(L and T)/P(L)
 - P(L and T):
 - estimated by counting all occurrences when **both** things occurred
 - P(L):
 - estimated by counting all occurrences when L occurred
- Conditional prob. is crucial in the **Bayes** Theorem
 - and the Naive Bayes classification algorithm
 - the bread and butter of many data science techniques
 - Assignment 4





Marginal probabilities

- Prepresent conditional probabilities in tables
 - the table has joint probabilities in it, of two events
 - to marginalize a probability of A is to compute P(A) by removing any dependencies on other events
 - by summing along row or column •
 - e.g. 0.24 is the P of being a Freshman
 - e.g. 0.45 is the P of being Single
 - the marginals should sum up to 1 •
 - across row and separately along column
 - why?



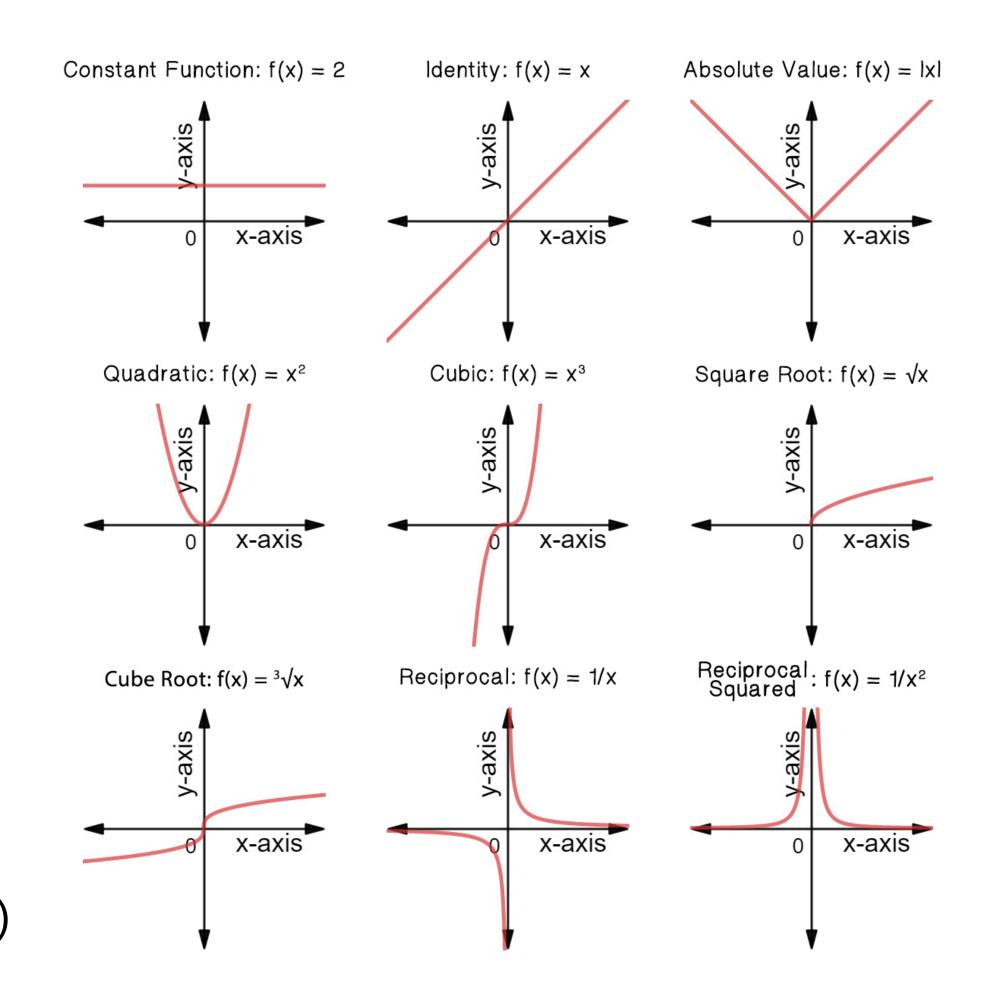
Joint Probability Table					
	Single	In a relationship	It's complicated	Marginal '	
Freshman	0.13	0.09	0.02	0.24	
Sophomore	0.16	0.10	0.02	0.28	
Junior	0.12	0.10	0.02	0.23	
Senior	0.01	0.09	0.00	0.10	
5+	0.03	0.12	0.01	0.15	
Marginal Status	0.45	0.48	0.07		

https://web.stanford.edu/class/archive/cs/cs109/cs109.1176/lectures/12-ContinuousJoint.pdf

Let's work with probabilities to estimate what the world looks like!

Functions review

- Functions are bread and butter of statistics
- Function:
 - input—output
 - given **x**, what is the value of **y**?
 - f(x)
 - e.g f (x): y = 2x
- Function equations can be visualized as lines and curves (in 2D)
- **Probabilities** can be seen as functions
 - what is the probability of observing datapoint x?
 - ...need to know how datapoints are **distributed**
 - probability functions describe such distributions

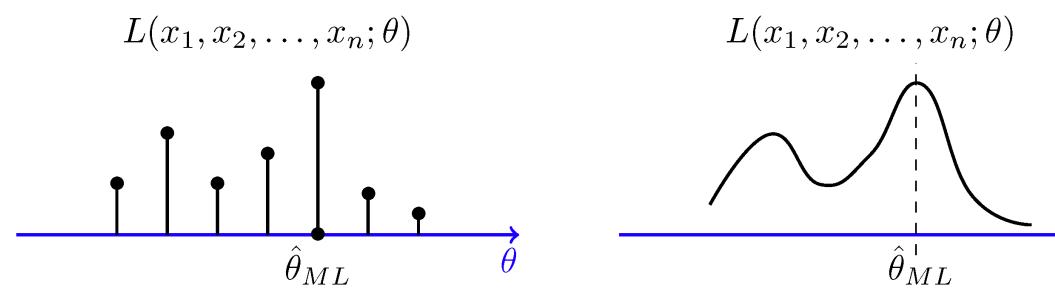


https://www.expii.com/t/classifying-common-functions-4320

Maximum (log) Likelihood

Maximum likelihood estimation

- Goal:
 - Represent probabilities **abstractly**, as formulae
 - Prob. of each outcome is a **parameter**
 - Parameters can be **unknown**; we want to **estimate** their values
 - e.g. (weighted, non-fair) coin toss
 - What's the P(H)?
 - we don't know, so we will use an abstract parameter
 - θ
 - then $P(T) = 1 \theta$
 - then P(HT) = $\theta^*(1-\theta)$
 - then P(HHHTT) = $\theta^3 * (1 \theta)^2$
 - What is θ ?



https://www.probabilitycourse.com/chapter8/8_2_3_max_likelihood_estimation.php

Maximum likelihood

- Suppose we tossed a non-fair coing 5 (billion) times:
 - result{H,H,H,T,T}
 - what's the P(H)?
 - 3/5
 - This is by definition, which is theoretical •
 - Can we get some practical evidence for this? •

Maximum likelihood estimation

- Yes!
- We know there is some P of getting H:
 - call it θ
- What do we know about P(T)?
 - it has to be $1-\theta$
- $D = \{HHHTT\}$
 - What's P(D)?
 - P(D) is the **product** of the probabilities

Maximum likelihood estimation

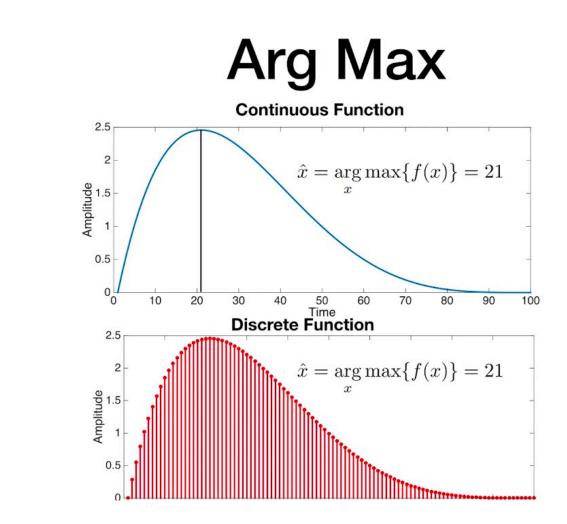
- D = {HHHTT}
 - $P(D) = \theta^3 * (1 \theta)^2$
- What are we after here?
 - θ (aka P(H))
- We want a value for θ such that P(D) is max!
 - how to find the **maximum** point of a function?
 - think of functions as **curves**
 - a curve becomes **flat** at its maximum
 - a curve's **slope** is its **derivative**, and derivative = **O** at the flat point
 - which may be directly **computable** (calculus)
 - we know how to compute derivatives for a range of functions
 - we just **look it up**
 - for functions for which we **can't** compute the derivatives:
 - we estimate by **other means** ("gradient descent")

÷	 -	 i

Before we continue: Two additional pieces

arg max

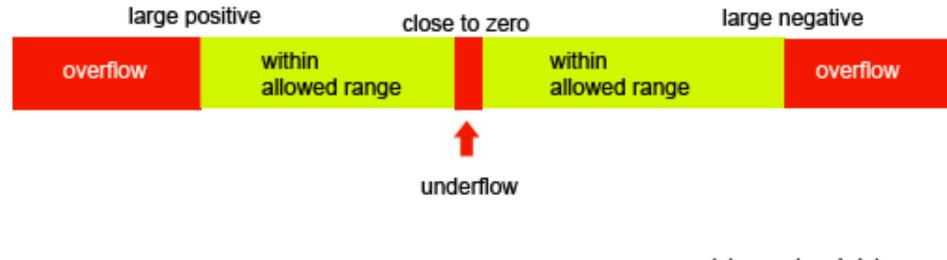
- functions look like **curves** (in 2D)
- Those curves have **maxima** along the **Y**-axis
- The point on the **X-axis** where Y is maximum:
 - is the **arg max**
- Why is this important:
 - We want to find parameters for probability functions given our observations
 - If the function has parameter θ , which value for θ results in maximum probability for the observed sequence/data?



Logarithms and Products

- Probabilities range from O to 1
- Suppose you have a looooong sequence of events
- What happens if you multiply many-many numbers each ranging between 0 and 1?
 - your number becomes so small that the computer **cannot represent** it
 - **logs** to the rescue!

LIMITS OF FLOATING POINT NUMBERS

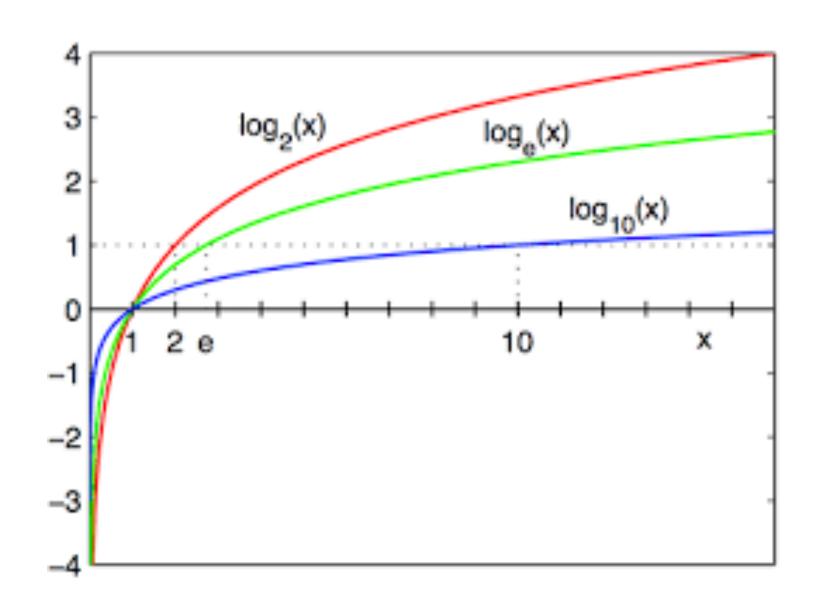


(c)www..teach-ict.com

https://www.teach-ict.com/as as computing/ocr/H447/F453/3 3 4/floating point/miniweb/pg9.htm

Logarithms and Products

- $\log(x^*y) = \log(x) + \log(y)$
- Due to certain **properties of the log**: \bullet
 - Can use log(P(A)) in place of P(A)
 - for likelihood estimation
 - arg max of P(D) will be where arg max for log(P(D)) is!
 - and In(P(D)) lacksquare
 - => Can use **sum of logs instead** of product



https://en.wikipedia.org/wiki/Logarithm

- Reminder: •
 - log is inverse function to exponent
 - e.g. 10^2 = 100
 - => $log_{10}(100) = 2$
 - In is "natural log"; it is "base 2.71828" (e)

Maximum likelihood $\hat{\mathcal{G}} = arg$, for calculus fans arg max $ln (\mathcal{G}^3)$

- D = {HHHTT}
 - $P(D) = \theta^3 * (1 \theta)^2$
- What are we after here?
 - θ (aka P(H))
- We want a value for θ such that P(D) is max!
 - we know the derivative for natural log of x
 - as well as for ln(1-x)
 - use θ as x

max t Kn (2°, 39

Lecture survey in the chat