Computational Methods

for Linguists
 Ling 471

Olga Zamaraeva (Instructor)

Yuanhe Tian (TA)
04/29/21

Reminders

- Make sure to create private repository copies for the assignments
- I was mistaken to think forks were private
- You can delete your forked copies if you like
- Can clone and copy manually, or use import
- Whichever way you choose, please do not publish any solutions to the HW anywhere
- Assignment 3:
- a "short" description and a detailed walkthrough available
- ...is harder than Assignment 2
- Please fill out Midterm Course Evaluations!

Questions?

Plan for today

- Data science and probability:
- what's the connection?
- Probability theory basics
- Statistics: distributions and estimation
- time-permitting
- Some of today's and next week's material may be dense
- Goal: Learn something about those things
- Remember, no exams :)
- Unlikely to ask you to compute something terrible in HW

- If this is the first time you hear about these things:
- You will understand them better next time you hear about them

Probability and Statistics

Data science and statistics

- There is a lot of randomness and uncertainty in the world
- Many processes in our lives are data-generating
- how many times we click on what
- how many messages we send/receive, of what kind
- what places we visit and how often
- etc., etc., etc.
- Statistics:
- A science of making sense of the world by sampling data
- What is true for the sample, is also true for the population
- ...if the sample is random and sufficiently large

Statistics and Probability Theory (and Data Science)

https://www.quora.com/What-is-the-difference-between-probability-and-statistics

- Statistics
- Use probability distributions to make sense of large data formally
- Informally: Oriented at analyzing past events
- Given the samples which I drew, what can I say about the population?
- No distribution => no statistics!
- Data Science:
- Probability + Statistics
- Analyze past events and predict future events, at scale, in real world

Prediction and Probabilities classification problem

- Predictions in data science and ML need to be quantified
- To predict whether a review is POS or NEG:
https://jtsulliv.github.io/perceptron/
- e.g. compute the probability of it being POS
- predict POS if that probability is high
- predict NEG otherwise
- Conditional probability: $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- where Y is the label and X is the observation
- e.g. $Y=P O S$ and $X=$ "this is a good movie!"
- How to learn $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$?
- There are mathematical functions which you can use
- A bit more in our ML-dedicated lectures later...

Probability Theory

- ...is notoriously unintuitive and hard
- Our goal:
- get familiar with a subset of basic concepts
- not necessarily in the most formal and exhaustive way
- ...such that we can experiment with some data science models in assignments 4-5

Probability Theory our goals for this lesson

- Definitions:
- events, outcomes, sample space, random variable
- Mutually exclusive events
- Sequences and independent events

https://www.quora.com/What-is-the-difference-between-probability-and-statistics
- Joint probabilities
- Conditional probability
- Marginalizing joint probabilities
- Bonus: Maximum Likelihood Estimation

Probability
 basic intuitions

- How likely is something to happen?
- Well, we don't know!
- But, we can estimate
- based on prior observations or base on what we assume about the situation
- Out of \mathbf{n} experiments (the "sample space"), how many resulted in a specific outcome?
- this ratio is the probability of that specific outcome
- turns out, you can show formally that it is the ratio (MLE)
- Understanding what the "sample space" is exactly is crucial
- The probability will be different based on what the sample space actually is
- Often times, need to subtract things from what intuitively seems like it's the sample space
- particularly conditional probabilities
- That's the main reason why probability is often unintuitive

SAMPLE SPACE (Chocolate, Vanilla, Strawberry) Uniform

SAMPLE SPACE \{Boy, Girl\}
Uniform

SAMPLE SPACE (Blue, Red) Not Uniform
http://www.geometrycommoncore.com/content/unit6/gcp1/studentsnotes1.html

Coin toss

the classic probability example

- Sample space
- Experiment
- Outcome

\{Head, Tail\}
\{Head, Tail\}
Uniform

SAMPLE SPACE
$\{1,2,3,4,5,6\}$
(1, $2,3,4,5,6$
Uniform

SAMPLE SPACE
\{Red, Yellow, Green, Blue

5	4	5	6
6			

3

SAMPLE SPACE
SAMPLE SPAC
$\{4,5,6\}$ Not Uniform

Picking a flavor of ice cream

SAMPLE SPACE
\{Chocolate, Vanilla, Strawberry\}
Uniform

Determining the gender of baby Picking from a bag of marbles

SAMPLE SPACE
\{Boy, Girl\}
Uniform
${ }^{(B)}{ }^{(B)}$
SAMPLE SPACE
(Blue, Red] Not Uniform
http://www.geometrycommoncore.com/content/unit6/gcp1/studentsnotes1.html

Coin toss
 the classic probability example

- Sample space
- $\{T, H\}$
- Experiment
- one toss
- Outcome
- either H or T

Coin toss series
 the classic probability example

- Sample space
- depends on the number of tosses
- for 2: $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Experiment
- A number of tosses
- Outcome
- A sequence of Hs and Ts
- Statistically, the $\mathrm{P}(\mathrm{H})$ is estimated by a large number of experiments
- toss the coin a billion times
- compute how many H you got (N)
- $\mathbf{N} /$ billion is the statistical/empirical estimate of $\mathbf{P (H)}$
- and you can actually prove it formally
- Maximum Likelihood Estimation (MLE)

A Fair Coin

- A fair coin is a coin such that $\mathbf{P}(\mathbf{H})=\mathbf{1 / 2}$
- In other words, you can toss it a billion times and expect H to come up $\sim 500 \mathrm{mln}$ times
- what if I actually did it and got 500,000,001 Heads?
- 500,000,001/1,000,000,000 = 0.500000001
- for all practical purposes, that's still $\mathbf{1 / 2}$:)

Probability and Frequency

https://www-air-worldwide.com/blog/posts/2019/3/understanding-probability-are-you-asking-the-right-questions/

- How probable is some outcome?
- e.g. H or T
- How frequent is some outcome?
- e.g. H or T
- What's the difference?
- Frequency is observed
- Probability is estimated

Probability of sequence in NLP

- Very important in data science and NLP!
- ...because, we usually deal with many events
- ...because, texts are sequences :)
- ...of words, characters, syllables, sentences, paragraphs...
- language modeling:
- estimating probabilities of textual sequences
- given what we've seen before, what is the most likely continuation?

"Probabilities sum to 1"
 ...for mutually exclusive events

- Why? What does that mean?
- This refers not to any set of probabilities but only to those which account for all possible outcomes in a specific setting
- Just a convention/definition
- 1 = 100\%
- Consider all possible outcomes in the coin toss setting

https://www.mathsisfun.com/data/probability-events-mutually-exclusive.html
- e.g. $\{\mathrm{H}, \mathrm{T}\}$
- when you toss a coin, it must result in H or T
- ...There is a 100% probability that ONE of the possible outcomes will be observed
- Notation: $\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{T})=1$

Mutually exclusive events

- e.g. H and T in a coin toss
- $P(H$ and $T)=0$
- for one coin toss
- e.g. $P($ King and Ace $)=0$
- if drawing one card
- but: P (King and Hearts) > 0

Probability of sequence of independent events

- Suppose you toss a fair coin twice
- What's the sample space?
- \{HH, HT, TT, TH\}
- What's $\mathrm{P}(\mathrm{HH})$?
- 1/4
- observe: this is $P(H)$ * $P(H)$
- Probability of a sequence is a product
- What's $\mathrm{P}(\mathrm{HT}$, in this order)?
- 1/4
- What's P of getting one H and one T , any order?
- 1/2
- observe: this is $\mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH})$!
- you want to estimate the P of getting one OR the other!
- Probability of a disjunction is a sum

Random variables

- Set of possible values from a probabilistic experiment
- e.g. $\{H, T\}$
- we can call $H=1$ and $T=0$, or any other arbitrary value!
- the point is, there is two of them and they are mutually exclusive
- Potentially confusing:
- What do people mean when saying $P(X)$ or $P(A)$?
- it depends, but most often they mean:
- if A is a random variable and the values are e.g. $\{1,2,3,4,5,6\}$
- then $P(A)$ may refer specifically to $P(A=1)$ or $P(A=5)$

Random Possible Random Variable Values Events

https://www.mathsisfun.com/data/random-variables.html

Independent events

- One event does not affect the other
- e.g. coin toss/die roll etc.
- $P(A$ and $B)=P(A)^{*} P(B)$ only if A and B are
- $\mathrm{P}(1)$?
- $\mathrm{P}(2)$? independent

Independent events

- One event does not affect the other
- e.g. coin toss/die roll etc.
- $P(A$ and $B)=P(A)^{*} P(B)$ only if A and B are independent
- $P(1)=1 / 1024$
- $P(2)=1 / 1024$
- whaaaat?!
- This is unintuitive, because we were not comparing $\mathrm{P}(1)$ to $\mathrm{P}(2)$
- we were comparing $\mathrm{P}(1)$ with something more like $1-\mathrm{P}(1)$

Conditional probability

- What's the probability of A given B ?
- e.g., if it is very sunny, is it more or less likely that it will rain in 30 minutes?

2 in 5

- (compared to when it is not sunny)
- e.g. if you see lightning, is it more or less likely that you hear thunder in a few seconds?
- (compared to when you don't see a lightning)
- Formal example: removing marbles from a bag
- consider the sample space

Conditional probability definition

- $\mathrm{P}($ thunder | ligntning $)=\mathrm{P}(\mathrm{L}$ and T$) / \mathrm{P}(\mathrm{L})$
- $P(L$ and $T)$:

- estimated by counting all occurrences when both things occurred
- $\mathrm{P}(\mathrm{L})$:
- estimated by counting all occurrences when \mathbf{L} occurred
- Conditional prob. is crucial in the Bayes Theorem
- and the Naive Bayes classification algorithm
- the bread and butter of many data science techniques

So the probability of getting $\mathbf{2}$ blue marbles is:

And we write it as

$$
\begin{gathered}
\text { "Probability } O f " \\
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \\
\text { Event } A \text { Eviven" } \mathrm{B}
\end{gathered}
$$

"Probability of event A and event B equals
the probability of event A times the probability of event B given event A"

- Assignment 4

Marginal probabilities

- Prepresent conditional probabilities in tables
- the table has joint probabilities in it, of two events
- to marginalize a probability of A is to compute $P(A)$ by removing any dependencies on other events
- by summing along row or column
- e.g. 0.24 is the P of being a Freshman
- e.g. 0.45 is the P of being Single
- the marginals should sum up to 1
- across row and separately along column
- why?

Joint Probability Table				
	Single	In a relationship	It's complicated	Marginal Year
Freshman	0.13	0.09	0.02	0.24
Sophomore	0.16	0.10	0.02	0.28
Junior	0.12	0.10	0.02	0.23
Senior	0.01	0.09	0.00	0.10
$5+$	0.03	0.12	0.01	0.15
Marginal Status	0.45	0.48	0.07	

Statistics

Let's work with probabilities to estimate what the world looks like!

Functions
 review

- Functions are bread and butter of statistics
- Function:
- input-output
- given \mathbf{x}, what is the value of \mathbf{y} ?
- $f(x)$
- e.g $f(x): y=2 x$
- Function equations can be visualized as lines and curves (in 2D)
- Probabilities can be seen as functions
- what is the probability of observing datapoint x ?
- ...need to know how datapoints are distributed
- probability functions describe such distributions

Constant Function: $\mathrm{f}(\mathrm{x})=2$

Cube Root: $f(x)=\sqrt[3]{ } x$

Cubic: $f(x)=x^{3}$

Reciprocal: $f(x)=1 / x$

Absolute Value: $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$

Square Root: $f(x)=\sqrt{ } x$

Maximum (log) Likelihood

Maximum likelihood estimation

- Goal:
- Represent probabilities abstractly, as formulae
https://www.probabilitycourse.com/chapter8/8_2_3_max_likelihood_estimation.php
- Prob. of each outcome is a parameter
- Parameters can be unknown; we want to estimate their values
- e.g. (weighted, non-fair) coin toss
- What's the $P(H)$?
- we don't know, so we will use an abstract parameter
- θ
- then $\mathrm{P}(\mathrm{T})=1-\theta$
- then $\mathrm{P}(\mathrm{HT})=\theta^{\star}(1-\theta)$
- then $\mathrm{P}($ HHHTT $)=\theta^{3} *(1-\theta)^{2}$
- What is θ ?

Maximum likelihood

- Suppose we tossed a non-fair coing 5 (billion) times:
- result $\{\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{T}\}$
- what's the $P(H)$?
- 3/5
- This is by definition, which is theoretical
- Can we get some practical evidence for this?

Maximum likelihood

 estimation- Yes!
- We know there is some P of getting H :
- call it θ
- What do we know about $\mathrm{P}(\mathrm{T})$?
- it has to be $1-\theta$
- $D=\{H H H T T\}$
- What's $P(D)$?
- $P(D)$ is the product of the probabilities

Maximum likelihood estimation

- $\mathrm{D}=\{\mathrm{HHHTT}\}$
- $\mathrm{P}(\mathrm{D})=\theta^{3} *(1-\theta)^{2}$
- What are we after here?
- $\theta($ aka $\mathrm{P}(\mathrm{H}))$
- We want a value for θ such that $P(D)$ is max!
- how to find the maximum point of a function?
- think of functions as curves
- a curve becomes flat at its maximum
- a curve's slope is its derivative, and derivative $=\mathbf{O}$ at the flat point
- which may be directly computable (calculus)
- we know how to compute derivatives for a range of functions
- we just look it up
- for functions for which we can't compute the derivatives:
- we estimate by other means ("gradient descent")

Before we continue: Two additional pieces

arg max

- functions look like curves (in 2D)
- Those curves have maxima along the \mathbf{Y}-axis

Arg Max

- The point on the \mathbf{X}-axis where Y is maximum:
- is the arg max
- Why is this important:
- We want to find parameters for probability functions given our observations
- If the function has parameter θ, which value for θ results in maximum probability for the observed sequence/data?

Logarithms and Products

- Probabilities range from 0 to 1
- Suppose you have a looooong sequence of events
- What happens if you multiply many-many numbers each ranging between 0 and 1?
- your number becomes so small that the computer cannot represent it
- logs to the rescue!

Logarithms and Products

- $\log \left(x^{*} y\right)=\log (x)+\log (y)$
- Due to certain properties of the log:
- Can use $\log (P(A))$ in place of $P(A)$

https://en.wikipedia.org/wiki/Logarithm
- for likelihood estimation
- $\arg \max$ of $P(D)$ will be where arg max for $\log (P(D))$ is!
- and $\ln (\mathrm{P}(\mathrm{D}))$
- => Can use sum of logs instead of product
- Reminder:
- log is inverse function to exponent
- e.g. $10^{\wedge} 2=100$
- $\Rightarrow \log _{10}(100)=2$
- In is "natural log"; it is "base 2.71828" (e)

$$
P(D)=\theta^{3}(1-\theta)^{2}
$$

Maximum likelihood $\hat{g}=\arg \max _{g} P(D ; \theta)=$ for calculus fans

- $\mathrm{D}=\{\mathrm{HHHTT}\}$

$$
\begin{aligned}
& \text { fans arg max } \ln \left(\theta^{3}(1-\theta)^{2}\right)= \\
& \frac{d}{d \theta} \ln \left(\theta^{3}(1-\theta)^{2}\right)=\frac{d}{d \theta} \ln \left(\theta^{3}\right)+\ln (1-\theta)^{2}
\end{aligned}
$$

- $\mathrm{P}(\mathrm{D})=\theta^{3} *(1-\theta)^{2}$

$$
=\frac{d}{d \theta} \ln \theta^{3}+\frac{d}{d \theta} \ln (1-\sigma)^{2}=
$$

- What are we after here?
- θ (aka $\mathrm{P}(\mathrm{H})$)
- We want a value for θ such that $\mathrm{P}(\mathrm{D})$ is max!
- we know the derivative for natural \log of x
- as well as for $\ln (1-x)$
- use θ as x

Lecture survey in the chat

