Computational Methods

for Linguists
 Ling 471

Olga Zamaraeva (Instructor)

Yuanhe Tian (TA)
05/04/21

Thanks

- Many thanks for filling out evaluations
- (and lecture surveys)
- Feedback:
- Term definitions
- I will try; please type in the chat or even just interrupt outloud: "Blah: definition?" when I miss something
- More activities
- Let's try today!
- Ability to add specific (optional) comments in lecture survey
- Done!
- Canvas is bad (e.g. for discussion threads)

- Fully agreed :) :) :)

Reminders

- Assignment 3 due Thursday
- Blog due today
- Comments due by Thursday

Plan for today

- Finish probability theory basics:
- Probability mass and density
- Distributions
- Gaussian/Normal distribution
- in Linguistics???
- Group activity/exercise:
- Implement the Gaussian formula in python and visualize the data and the distribution
- Implementing formulas is scary
- Goal: tackle some of that fear :)

Probability Mass, Density, and Distributions

(this is all a bit abstract)
(I will try to present the same info from different angles on different slides)

Relative frequencies and histograms

- Frequency:
- How many times an outcome occurred

- Relative frequency:
- What percentage of all outcomes does the outcome represent
- Estimator for probability
- Histogram:
- x-axis: outcomes
- y-axis: frequencies or relative frequencies
- relative frequencies will sum to 1
- and then our histogram becomes a Probability Mass Function

Probability mass function

- the PMF is the distribution of probabilities for discreet RVs
- given a possible value for a Random Variable
- $P(X=x)$
- returns the probability of that outcome
- i.e. how are probabilities distributed between possible outsome values
- e.g. for rolling a die:
- $P(X=x)=1 / 6$
- $X:\{x=1, x=2, x=3, x=4, x=5, x=6\}$
- can be visualized as a graph/histogram
- the sum of all "bars" of PMF sums to 1

Probability distributions review

- Long time ago (18th century or earlier):
- Mathematicians collecting/analyzing data noted
- the same shapes kept reappiaring
- Distribution
- Represent how the outcome relative frequencies are distributed
- as a function/formula (curve)
- use the curve to predict future outcomes
- Distribution curves/shapes appropximate the truth

- based on many empirical observations
- Known/defined functions have parameters
https://www.datasciencecentral.com/profiles/blogs/common-probability-distributions-the-data-scientist-s-crib-sheet
- which can be estimated based on the observed data
- which values for parameters make the observed data the likeliest?
- Not all distributions resemble known functions
- the ones which are known were simply observed more, to eventually get names
- When approximating, we are restricted to a set of functions for which the area under the curve sums up to 1
- Otherwise, would not be able to interpret the function as probability disribution

Probability distributions informal summary

- We want to be able to predict a phenomenon
- e.g. bus arrivals
- How do we know which probability function to

https://www.datasciencecentral.com/profiles/blogs/common-probability-distributions-the-data-scientist-s-crib-sheet the shape of best-fitting curve and see which known function it resembles the most, or invent a new name for the function
- Option 2: Maybe "waiting time" is a common phenomenon and there is a well-known distribution already (i.e. somebody has already done Option 1)

Probability Density
 Continuous Random Variables

- Some random variables are continuous
- set of values is a range, e.g. from 0 to 1 , or from 0.99 to 99.99...
- Age: 25 years, 10 months, 2 days, 5 hours, 4 seconds, 4 milliseconds, 8 nanoseconds, 99 picosends...and so on.

- as opposed to discreet (coin toss, die roll...)
- set of countable values: $\{H, T\} ;\{1,2,3,4,5,6\}$
- Continuous random variables's distributions are defined by their probability density functions

- The area under the curve sums to 1

Normal distribution aka Gaussian

- The most famous probability distribution
- e.g. "people's heights are normally distributed"

- ...as for linguistics:
https://www.usablestats.com/lessons/normal
- Sociolinguistic phenomena may be associated with normal distributions
- but textual phenomena not so much!
- words in text are not independent and are not continuous
- Still, knowing basic properties of the Gaussian is important
- ...often, it is useful to assume a Gaussian even where there isn't any!

https://medium.com/@ar3441/the-central-limit-theorem-9ede4ebfafa5

Normal distribution aka Gaussian

- Much of data out there is normally distributed

- If data is normal, can use "parametric methods"
- a range of powerful methods that assume a distr.
- if not, should use other, less powerful methods!
- except, can sometimes assume data is "normal enough":)
- Is language data normally distributed?
- depends on what kind, of course
https://www.usablestats.com/lessons/normal
99.7\% of the data are within

https://medium.com/@ar3441/the-central-limit-theorem-9ede4ebfafa5

Normal distribution aka Gaussian

- aka the Bell-shaped curve
- One of the most important distributions in the world :)
- Center: the average value (the mean)

- e.g. the average height in a population
- Tails: the outliers
- Standard Deviation:
- a value such that $2 / 3$ of observations fall within 1 std. dev. from the mean
- the smaller the std. dev. the better
- the data then is less widely variable and easier to reason about
- What's the Y-axis here?
- "frequency", as in how many people have that height
- What's up with the bars and the curve?
- the bars are actual observations
- the curve is a "fit"
- What would we use the curve for?
- if standardized to range from 0 to 1 , it's the probability distrubution!
https://www.usablestats.com/lessons/normal

99.7% of the data are within

https://medium.com/@ar3441/the-central-limit-theorem-9ede4ebfafa5

Normal distribution aka Gaussian

- How are Gaussians used?

- the curves are defined by two parameters:

- mean
- standard deviation
- Estimate the parameters from samples
- will never know about the actual population!
- given these parameters (i.e. the curve!):
- can predict how many outcomes to expect in which range
- ...for the entire population!
- e.g. how many shoes to produce of which size
https://www.usablestats.com/lessons/normal

https://medium.com/@ar3441/the-central-limit-theorem-9ede4ebfafa5

Normal distribution aka Gaussian

- When is mean (average) not enough?
- Knowing the mean height is useful:
- e.g. how many shoes of which size to produce
- What about knowing the mean wealth?
- if the data is not actually normally distributed:
- knowing the mean doesn't give you as much
- because fitting a bell curve onto the data would be inaccurate
- e.g. the median wealth in Seattle is different from the mean wealth
- What about language?
- Sociolinguistic variables may be normally distributed
- Syntactic phenomena?..
- Maybe!

https://www.usablestats.com/lessons/normal

Data can be "distributed" (spread out) in different ways.
It can be spread out more on the left

Or more on the right

Or it can be all jumbled up

Normal distribution in language

- Sociolinguistic variables may be normally distributed
- Syntactic phenomena?..

https://www.usablestats.com/lessons/normal
- Maybe!
- E.g. passive sentences in samples from the Brown corpus
- "Binomial" distribution:
- Two possible outcomes (like coin toss)
- passive/not passive

- looks like Gaussian in shape, but is discreet

Normal distribution aka Gaussian

- The formula:

- $\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

https://mathbitsnotebook.com/Algebra2/Statistics/STstandardNormalDistribution.html
https://www.usablestats.com/lessons/normal

$$
99.7 \% \text { of the data are within }
$$

The Central Limit Theorem for independent variables

- In real life:
- impossible to observe the entire population
- Also in real life:
- The distribution of sample means will be approximately Normal if the sample is large
- ...and equal to the population mean...
- ...even if the distribution of the entire population is not Normal
- So, take many samples, get the mean of each
- the means will be distributed normally
- ...now you can reason pretty well where the actual mean is
https://medium.com/@seema.singh/central-limit-theorem-simplified-46ddefeb13f3

Demo: The python numpy package and matplotlib.pyplot package

Activity:
 Generating Gaussian data and visuallizing it:

https://olzama.github.io/Ling471/assignments/ex-gauss.html

-Goals:

-Strengthen built-in method calls
-Passing the right arguments in the right order
-Storing return values in variables
-Overcome the fear of Greek letters, fractions, and exponents
-...to some extent
-Practice writing code which doesn't really work until you finish all of it (you need to build a bigger picture of what's happening in your head)

Lecture survey: in the chat

