Computational Methods for Linguists Ling 471

Olga Zamaraeva (Instructor) Yuanhe Tian (TA) 05/06/21

1

Reminders

- Assignment 3 due today
 - ...how are people doing?
- Blog responses due today
- Assignment 4 will be published soon
 - I will send out an additional announcement
 - due date moved to May 25

May 20	Working with linguistic corpora	TBA	
May 25	Visualization and Communication	TBA	Assignment 4
May 27	Visualization and Communication	TBA	Blogs 5
June 1	Presentations		
June 3	Presentations		
June 8			Assignment 5

From class syllabus

Corrections Thank you!

• Age is of course **not** a Gaussian

- Thanks for doubting!
- You can imagine situations where it will be but it is very different from e.g. height
- Other examples of actually Gaussian stuff:
 - amount of hair on people's heads
 - weight •
 - age when children acquire syntax
- "Discrete" variable is not spelled "discreet" :)

Plan for today

- Precision and Recall review
- Theory:
 - The Bayes Theorem
 - Activity
 - Next week: Naive Bayes classification algorithm
- Practice:
 - Packages:
 - pip
 - pandas and dataframes

Precision and Recall review

- Context: Object apple i retreival
 - Array of objects: [0, 1, 2, 3, 4, 5, 6, 7]
 - [🍎 🍎 🍎 🍎 🍎 🍎] • Ground Truth:
 - [🍎 🍝 🍎 🍎 🍝 🍎 🍝] • Our System:
- Reference table for the **four types of label**
- **True Positive:** 0,2,3
- **False Positive:** 6 ullet
- **True Negative:** 4,5,7
- False Negative: 1
- Compute Precision and Recall as per **definitions**

	Predicted class POSITIVE (spam 🖾)	Predicted class NEGATIVE (normal 🖄)	
Actual class POSITIVE (spam ⊠)	TRUE POSITIVE (TP)	FALSE NEGATIVE (FN)	$Recall = \frac{TP}{TP + FN}$ $= \frac{320}{320 + 43} = 0.882$
Actual class NEGATIVE (normal ⊠)	FALSE POSITIVE (FP)	TRUE NEGATIVE (TN)	
	$Precision = \frac{TP}{TP + FP} = \frac{320}{320 + 20} = 0.941$		•

https://www.knime.com/blog/from-modeling-to-scoring-confusion-matrix-and-class-statistics

https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826

A classic example (teaser)

- Suppose:
 - 1% of population have cancer
 - 80% of tests detect it correctly while 20% of tests fail to detect it ("false negative")
 - 9.6% of tests detect it when it is not there ("false positive") while 90.4% correctly return negative
- Q: If you get a positive result, what is the probability of you having the disease?
 - Many people say "80%"
 - ...but that is not so:
 - the event of "testing" is separate from the event of "having the disease"!
 - they have different probabilities!
 - Stay tuned.

Bayes Theorem

Bayes Theorem in probability theory

- Recall:
 - Conditional probability

$$P(B | A) = \frac{P(A \cap B)}{P(A)}$$

- notation: $A \cap B$ = "A and B" both occurred
- "Intuition":
 - How many times I saw A after I also saw B?
 - Derive the formula from the marble example
 - Sequence of A and B => product of P(A) and P(B|A)
 - ...then just rewrite the equation to express P(B|A) in terms of P(A and B) and P(A)
- By the way:
 - In a sequence of two marble draws, what's P(second marble is blue)?
 - call it **P(A)**
 - P(A) = P(second is blue)*P(first is blue) + P(second is blue)*P(first is red)
 - The first marble is there!

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

The Bayes Theorem

Conditional probability https://www.mathsisfun.com/data/probability-events-conditional.html

Bayes Theorem in probability theory

- The Bayes Theorem is related to conditional probability and to sequences
- Intution:
 - "Bayes rule provides us with a way to update our **beliefs** based on the arrival of new, relevant pieces of evidence." (Devin Soni)

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

The Bayes Theorem

https://www.edureka.co/blog/statistics-and-probability/#Bayes%20Theorem

Bayes Theorem derivation

- Note:
 - P(A,B) = P(A|B)*P(B)
- Note:
 - P(B,A) = P(B|A)*P(A)
- Note:
 - P(A,B) is the same as P(B,A)!
- Therefore:
 - P(A|B)*P(B) = P(B|A)*P(A)
- Therefore:
 - P(A|B) = P(B|A)*P(A) divided by P(B)!
- Why is this derivation meaningful/interesting?
 - Sometimes, we **know** P(B|A) but **not** P(A|B)!

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

The Bayes Theorem

https://www.edureka.co/blog/statistics-and-probability/#Bayes%20Theorem

Bayes Theorem an example

- Suppose:
- P(having cancer) = 0.05
 - (5% of people have it)
 - P(A)
- P(be a smoker) = 0.10
 - (10% of people smoke)
 - P(B)
- P(smoker|cancer) = 0.20
 - (20% of those who have cancer are smokers)
 - P(B|A)
- Find: P(cancer|smoker):
 - P(cancer|smoker) = 0.20 * 0.05 / 0.10 = 0.10

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

The Bayes Theorem

https://www.edureka.co/blog/statistics-and-probability/#Bayes%20Theorem

Bayes Theorem a classic example

• Suppose:

- 1% of population have cancer
- 80% of tests detect it correctly while 20% of tests fail to detect negative")
- 9.6% of tests detect it when it is not there ("false positive") where correctly return negative
- Q: If you get a positive result, what is the probability of you disease?
 - Work it out in a group activity: <u>https://olzama.github.io/Ling4</u> <u>activity-May6.html</u>
 - Hint: "P(B) is the P(positive test). But P(positive test) is not directly you!
 - Positive test outcome means: [the test is positive AND person h [the test is positive and there is NO cancer!]
 - Use the marbles example: P(two events) is similar to P(two mark

$$P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)}$$

The Bayes Theorem

$$P(A) \text{ is referred to as likelihood ratio which represents the actual probability (given event A) of error event A is represented as a posterior which means the probability of exert A given B
So the probability of getting 2 blue marbles is:
$$P(A|B) = P(A|A) = \frac{2}{4} \quad event P(A) \times P(B|A) = \frac{1}{10}$$
And we write it as

$$P(A) = \frac{2}{6} \quad event A Event B$$
We chan a B) = P(A) × P(B|A) = \frac{1}{10}$$

$$P(A \text{ and } B) = P(A) \times P(B|A)$$

$$Event A Event B$$
The basic concert B event B

Bayes Theorem a classic example

- Suppose:
 - 1% of population have cancer
 - 80% of tests detect it correctly while 20% of te detect it ("false negative")
 - This 80% is out of people who **do** have the disea
 - 9.6% of tests detect it when it is not there ("fal while 90.4% correctly return negative
- **Q:** If you get a positive result, what is the p you having the disease?
 - Answer: 7.8%
 - Useful reading: https://towardsdatascience.com/3-ways-to-think-about-bayes-ru

$$P(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)}$$

The Bayes Theorem
P(B) is referred to as *likelihood ratio* which
measures the probability (given event A) of
occurrence of B
P(A) is referred to as *softwire* which
means the probability of occurrence of A
given B
P(A)B) is referred to as *posterior* which
means the probability of getting 2 blue marbles is:

$$P(A) = \frac{2}{4} \bigoplus_{p(A) = \frac{1}{4}} \bigoplus_{p(A) = \frac{1}{4} \bigoplus_{p(A) = \frac{1}{4}} \bigoplus_{p(A) = \frac{1}{4}} \bigoplus_{p(A) = \frac{1}{4} \bigoplus_{p$$

Dataframes and pandas package

Installing packages with pip

- We will need several packages for next HW
- They are best installed via pip
- pip is included in python distribution (starting from python **3.8**)
 - **Usually**, it just works
 - Some people are having issues on Windows 10
 - See instructions here:
 - <u>https://phoenixnap.com/kb/install-pip-windows</u>
 - ...and here:
 - <u>https://stackoverflow.com/questions/23708898/pip-is-not-recognized-as-an-internal-</u> or-external-command
 - In any case, start with checking whether you have pip already
 - pip --version
 - python -m pip --version
 - py -m pip —version

15

Pandas

a popular data science package

- Stores data in convenient tables
- Allows for fast data access and manipulation
- Why store data as tables?
 - In data science/statistics/machine learning:
 - you work with "observations" (=data points)
 - each data point is a row
 - What are columns? ullet
 - data point can have different features
 - e.g. word counts!

https://www.kdnuggets.com/2020/03/python-pandas-data-discovery.html

Stack Overflow Traffic to Questions About Selected Python Packages sits to Stack Overflow questions from World Bank high-income co

Data as tables

rows:

observations, datapoints

columns:

- "features"
- can be many or few!
- Many ML algorithms involve linear algebra lacksquare
 - Linear algebra includes matrix multiplication
 - Matrices are tables! ullet

https://www.geeksforgeeks.org/python-pandas-dataframe/

	label	
0	1	For a movie that gets no respect there sure
1	1	Bizarre horror movie filled with famous face
2	1	A solid if unremarkable film Matthau as Eins
3	1	Its a strange feeling to sit alone in a thea
4	1	You probably all already know this by now bu

~	<pre></pre>
	> special variables
	<pre>correct_label: 'POSITIVE'</pre>
	text: 'good good bad bad '

Data as tables

rows: \bullet

- observations, datapoints
- columns:
 - "features"
 - can be many or few!
- The specific **dimensions** are crucial
 - For **any ML** algorithm:
 - need to know very well **how many columns** you have
 - (sometimes also rows, but that's less important for us)
- In pandas, columns can have **names**
 - which allows convenient querying
 - the "names" row is ignored
 - it is not an "observation"/datapoint

https://www.geeksforgeeks.org/python-pandas-dataframe/

	labol	
	Taper	
0	1	For a movie that gets no respect there sure
1	1	Bizarre horror movie filled with famous face
2	1	A solid if unremarkable film Matthau as Eins
3	1	Its a strange feeling to sit alone in a thea
4	1	You probably all already know this by now bu

Lecture survey: in the chat