Computational Methods for Linguists Ling 471

Olga Zamaraeva (Instructor) Yuanhe Tian (TA) 05/11/21

1

Reminders and announcements

- Assignment 4 published
 - due May 25
- Assignment 3 sample solution
 - Canvas —> Files
 - **Do not distribute** \bullet
- Entertaining video on the "reading list" for May 18
 - Ribeiro et al. 2020
 - Best paper at ACL conference! •
 - (The paper itself is more substantial than the video but less fun.)

May 20	Working with linguistic corpora	TBA	
May 25	Visualization and Communication	TBA	Assignment 4
May 27	Visualization and Communication	TBA	Blogs 5
June 1	Presentations		
June 3	Presentations		
June 8			Assignment 5

From class syllabus

Today is going to be quite mathematical... I promise we will talk about linguistics some! (At the end of quarter)

Why so mathematical?

- This is a course on CompLing
 - ...without prerequisites
- **Realistically**, CompLing **today** is all **machine learning**
 - (**Tomorrow** this may change... But today that's the case)
- ML is all **math** :/
- All that math requires **multiple** prerequisites
- Our goal: Start thinking about some of the underlying concepts
- Become (somewhat) better at actually using ML packages
 - it's a fine way to start!
 - but we can't be too **ambitious**
 - (hence no exams etc)

Plan for today

- Bayes Rule problem recap
- More dataframes!
 - access and manipulation
- Matrices and matrix multiplication
 - a "crash course" on linear algebra...
- Machine Learning:
 - Linear regression
 - A case for matrix multiplication \bullet
 - ...and for **knowing** what matrices' **dimensions** are!

Bayes Theorem a classic example: solution

- Suppose:
 - 1% of population have cancer
 - 80% of tests detect it correctly while 20% of tests fail to detect it ("false negative")
 - 9.6% of tests detect it when it is not there ("false positive") while 90.4% correctly return negative
- Q: If you get a positive result, what is the probability of you having the disease?
 - Hint: "P(B) is the P(positive test). But P(positive test) is not directly given to you!
 - Positive test outcome means: [the test is positive AND person has cancer] OR [the test is positive and there is NO cancer!]
 - Use the marbles example: P(**two** events) is similar to P(**two** marbles)

Bayes Theorem a classic example: solution

- Suppose:
 - 1% of population have cancer
 - 80% of tests detect it correctly while 20% of tests fail to detect it ("false negative")
 - 9.6% of tests detect it when it is not there ("false positive") while 90.4% correctly return negative
- Q: If you get a positive result, what is the probability of you having the disease?
 - Hint: "P(B) is the P(positive test). But P(positive test) is not directly given to you!
 - Positive test outcome means: [the test is positive AND person has cancer] OR [the test is positive and there is NO cancer!]
 - Use the marbles example: P(**two** events) is similar to P(**two** marbles)

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

The Bayes Theorem

- Need P(B)
- P(B) =
 - P(positive test)*P(have disease)
 - OR
 - P(positive test)*P(don't have disease)
- P(B) = 0.8*0.01 + 0.097*0.99 = 0.10304
- =>
- P(disease|positive) = 0.8* 0.01/0.10304 = 0.0776 = 7.8%

More dataframes with pandas

- Once a dataframe is created:
 - it can be accessed and manipulated
 - columns and cells can be accessed directly
 - without iteration!
 - dataframes can be concatenated
 - assuming the number of columns is the same
 - columns can be renamed, etc
- Crucially, matrix multiplication!

	label	te
0	1	For a movie that gets no respect there sure ar.
1	1	Bizarre horror movie filled with famous faces .
2	1	A solid if unremarkable film Matthau as Einste.
3	1	Its a strange feeling to sit alone in a theate.
4	1	You probably all already know this by now but .

X	t		
•	•		
•	•		
•	•		
•	•		
•	•		

pandas demo: more dataframes

Linear Algebra

Linear Algebra

- A branch of mathematics
 - ...which deals in **vectors** and **matrices** :)
- Vector: a row of values ("scalars")
- Matrix: a bunch of vectors
 - aka a **table**
 - which has rows and columns

https://www.mathsisfun.com/algebra/scalar-vector-matrix.html

Linear Algebra

- Linear Algebra is pretty abstract
- Idea: perform mathematics on entire matrices
 - multiply them
 - prove theorems about complex expressions involving them
 - etc.

https://www.mathsisfun.com/algebra/scalar-vector-matrix.html

Linear Algebra Sample definitions

- Matrix Transpose
 - columns and rows flipped
 - note the ^T notation...
 - if a matrix is denoted by a random variable X...
 - X^T

Transposing a 2x3 matrix to create a 3x2 matrix

Linear Algebra Sample definitions

- Matrix Inverse
 - Identity Matrix:
 - 1s on the diagonal, Os elsewhere
 - A⁻¹ is a matrix such that its product with A is equal to the Identity Martrix...
 - Yes, pretty abstract!
 - But kind of like: 8 * 1/8 = 1
 - 1/8 = 8⁻¹
 - Similarly, A * A^-1 = I(dentity matrix)

Matrix multiplication linear algebra

- Definition:
 - (But for now, look more at the example ullet>)
 - For two matrices A ans B, with dimensions NxM and MxK:
 - The product is a **NxK** matrix ullet
 - where each cell is a dot product of the i-th ulletrow of A and i-th column of B
 - N and K may be different but M must match •

Matrix multiplication linear algebra

- Definition:
 - For two matrices A ans B, with dimensions NxM and MxK:
 - The product is a **NxK** matrix
 - where each cell is a dot product of the i-th row of A and i-th column of B
 - N and K may be different but M must match

https://www.mathsisfun.com/algebra/matrix-multiplying.html

Matrix multiplication in python demo

Matrix multiplication Activity

- Go to link and implement the pie sales example:
 - <u>https://olzama.github.io/Ling471/</u> <u>assignments/activity-May11.html</u>
 - **Goal:** see the resulting 1x4 matrix as the result of multiplication!

[\$3 \$4 \$

Example: The local shop sells 3 types of pies.

- Apple pies cost **\$3** each
- Cherry pies cost **\$4** each
- Blueberry pies cost **\$2** each

And this is how many they sold in 4 days:

	Mon	Tue	Wed	Thu
Apple	13	9	7	15
Cherry	8	7	4	6
Blueberry	6	4	0	3

Now think about this ... the **value of sales** for Monday is calculated this way:

Apple pie value + Cherry pie value + Blueberry pie value

\$3×13 + \$4×8 + \$2×6 = \$83

So it is, in fact, the "dot product" of prices and how many were sold:

 $(\$3, \$4, \$2) \bullet (13, 8, 6) = \$3 \times 13 + \$4 \times 8 + \2×6 = \$83

We match the price to how many sold, multiply each, then sum the result.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

$$\begin{bmatrix} 13 & 9 & 7 & 15 \\ 8 & 7 & 4 & 6 \\ 6 & 4 & 0 & 3 \end{bmatrix} = \begin{bmatrix} \$83 & \$63 & \$37 & \$75 \end{bmatrix}$$
$$\$3x13 + \$4x8 + \$2x6$$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ \end{bmatrix}$$

Matrix multiplication why does it matter?

- It's because **much of ML** can be done by matrix multiplication
- All three pictures have something in common and the latter 2 illustrate **linear regression** which is a **basic ML algorithm**
 - ...but it is **not** easy to understand what they have in common
 - You will need **a course on linear algebra** for this
 - Our goal: Get used to the idea that data in linear regression look like vectors/matrices
 - The "multiplication" part is hard to understand, which is OK
 - ...suffice it to say that if you have matrices, you can multiply them
 - ...and that solving a matrix equation helps you minimize errors of your algorithm
 - ...which is to say it helps you **train** it

$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

https://www.programmersought.com/article/1216251344/

Machine learning and linear regression

Machine learning bird's eye view

- Machine learning:
 - Want a **function** such that it predicts **y** given **x**
 - e.g. POS or NEG given a review
 - "Train" such a function automatically on observations
 - "training data"
 - What kind of function/**curve fits** the observations **best**? •
 - **Option 1**: a curve which **minimizes training error**
 - ...actually, such a curve will go through every point!
 - that's what we need to consider for now
 - Option 2: a curve which allows for some small error in training
 - ...but results in **smaller test error** in practice
 - will talk about it next time

Machine learning linear regression

- Problem:
 - Predict **y** given **x** where x is **continuous**
 - e.g. predict weather, cost, distance, salary...
 - **Why** do we bother with continuous varialbes in this class? ullet
 - Sociolinguistic variables
 - ...to understand the basics of ML
- The mechanics are **abstract** and **hard** to understand
- **Goal**: Next time you see them, you are at least somewhat familiar
 - No homework on **implementing** the mechanics
 - But need to understand some concepts to be able to use packages

Linear regression in a nutshell

- Goal:
 - Fit a line to observed data
 - ...but **no** line is going to hit **ALL** points!
 - (in any interesting problem)
 - So, find a line such that the error is **minimal**
 - In other words: ullet
 - Given set of **observations**, find **parameters** of the line equation which **minimize the error**
 - (Remember MLE?) ullet
 - We were finding a **parameter** which **maximized likelihood** of observed • data
 - This is similar to finding a parameter (or parameters) which **minimize** • the error wrt observed data

an example

Linear regression review of what a line is:

• The **line** equation:

y = m**x** + b

lacksquare

- m: coefficient
 - the line slope
- b: intercept
 - where the line **crosses** the y-axis

 $y = 2^*x + 0$

an example

Linear regression "Errors" and "Least squares"

- How many points does our line predict correctly?
- What about the ones it doesn't?
 - Drop a vertical line from each
 - Its length is the "error"
 - how far is the prediction from the truth?
 - ...now, when choosing **m** and **b**, minimize the **sum of errors**
 - ...furthermore, minimize the sum of **squared** errors
 - ...because you care about the absolute distance from the truth, not whether it is above or below the actual point

speed (mph)	distance to stop
4	2
4	10
7	4
7	22
8	16

100

120

Linear regression "Errors" and "Least squares"

• Sum of squared errors:
•
$$(y_1 - f(x_1))^2 + (y_2 - f(x_2))^2 + (y_1 - f(x_1))^2 + \dots + (y_{1900} - f(x_{1900}))^2$$

• $\sum_{i=1}^n e_i^2 \leftarrow e_1^2 + e_2^2 + e_3^2 \cdots + e_{i,900}^2$
• y1 is the **truth**; f(x1) is the **prediction**
• Let **e1** = y1 - f(x1)
• $y1 = \mathbf{mx1} + \mathbf{b} + \mathbf{e1} \leftarrow y^2$

e is the error (can be positive or negative number) •

speed (mph)	distance to stop
4	2
4	10
7	4
7	22
8	16

Linear regression "Least squares"

• y1 = **m**x1 + **b** + e1

- One point is not worth much; can't find m or b
 - Need two points to draw a line...
- For two points, error will always be 0
- So, this is inherently a problem for **system** of **multiple** equations
 - which may be written and solved as a **matrix multiplication** problem

speed (mph) 4 4 7 7 8	distance to stop 2 10 4 22 16	$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} Y =$
 8	16	

Linear regression "Least squares"

• Y = XA + E

- All things here are **matrices**
- Y, A, E are just **vectors** (matrices of **width 1**)
 - vectors are matrices, too!
 - X needs to have the same **width** as the **length** of A
 - ...to conform to matrix multiplication definition

Want: **solve for A to minimize**

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} A = \begin{bmatrix} b \\ m \end{bmatrix} E = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

i=1

Linear regression "Least squares"

- **Y = XA + E** <— want **E** to be **minimal.** Now, you know **Y** and you know **X**! You **don't** know **A**.
- If you'd taken a course (or two) in linear algebra, you would know that, to minimize $\sum e_i^2$:
 - $A = (X^T X)^{-1} X^T Y$ magic. Just remember that it involves matrix multiplication...
 - can't explain **why** in this class :(
 - It has to do with the fact that the sum of squares is related to both dot product (sum) and multiplying a thing by itself (squaring, product)
 - It has to do with derivatives and solving a matrix equation for the derivative set = 0 ullet
 - Doesn't matter! Point is, **need to multiply matrices!**
 - What **matters** for you:
 - Understand that **data are matrices** •
 - which have dimensions such that multiplication is possible
 - **Also matters:** some matrices will be **transposed** in order to have the right dimensions • and to get multiplied

	/
	•
00	120

Pandas linear regression demo

Matrix multiplication in machine learning

- The x-s are **observations**
- The y-s/h-s are predictions frue values

• **h** is actually a **vector**

- (if you are lucky, it will be marked as such...)
- The betas/thetas are **coefficients**
 - weights
 - parameters
 - **Goal:** solve for parameters such that sum of squared errors is minimized
- Overfitting?!
 - Yes! But let's talk about it next time (briefly!)

$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$

https://www.mathsisfun.com/algebra/matrix-multiplying.html

https://www.programmersought.com/article/1216251344/

Recap of today's madness

- We looked at some pretty **dense** stuff
- ...which gets at the **core** of **how ML works**
- It is **not possible** to internalize it right away
- ...especially if you have not taken linear algebra
- Our goal was:
 - To convince ourselves that it is important to be able to store data in tables (matrices)
 - ...and that it is important to understand what matrices' **dimensions** are

Lecture survey: in the chat