Computational Methods

for Linguists
 Ling 471

Olga Zamaraeva (Instructor)

Yuanhe Tian (TA)
05/11/21

Reminders and announcements

- Assignment 4 published
- due May 25

May Working with

20 linguistic corpora
TBA

Visualization and Communication

Visualization and Communication Presentations

Presentations

- Assignment 3 sample solution
- Canvas -> Files
- Do not distribute
- Entertaining video on the "reading list" for May 18
- Ribeiro et al. 2020
- Best paper at ACL conference!
- (The paper itself is more substantial than the video but less fun.)

Today is going to be quite mathematical... I promise we will talk about linguistics some! (At the end of quarter)

Why so mathematical?

- This is a course on CompLing
- ...without prerequisites
- Realistically, CompLing today is all machine learning
- (Tomorrow this may change... But today that's the case)
- ML is all math :/
- All that math requires multiple prerequisites
- Our goal: Start thinking about some of the underlying concepts
- Become (somewhat) better at actually using ML packages
- it's a fine way to start!
- but we can't be too ambitious
- (hence no exams etc)

Plan for today

- Bayes Rule problem recap
- More dataframes!
- access and manipulation
- Matrices and matrix multiplication
- a "crash course" on linear algebra...
- Machine Learning:
- Linear regression
- A case for matrix multiplication
- ...and for knowing what matrices' dimensions are!

Bayes Theorem a classic example: solution

- Suppose:
- 1\% of population have cancer
- 80% of tests detect it correctly while 20% of tests fail to detect it ("false negative")
9.6\% of tests detect it when it is not there ("false positive") while 90.4\% correctly return negative
- Q: If you get a positive result, what is the probability of you having the disease?
- Hint: " $P(B)$ is the P (positive test). But P (positive test) is not directly given to you!
- Positive test outcome means: [the test is positive AND person has cancer] OR [the test is positive and there is NO cancer!]
- Use the marbles example: $P($ two events) is similar to $P($ two marbles)
$P(B \mid A)$ is referred to as likelihood ratio which measures the probability (given event A) of occurrence of B \qquad distribution of A
$P(A \mid B)$ is referred to as posterior which means the probability of occurrence of A given B

0.8×0.0

Bayes Theorem a classic example: solution

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- Suppose:
- 1% of population have cancer
- 80% of tests detect it correctly while 20% of tests fail to detect it ("false negative")
- 9.6% of tests detect it when it is not there ("false positive") while 90.4\% correctly return negative
- Q: If you get a positive result, what is the probability of you having the disease?
- Hint: " $P(B)$ is the P (positive test). But P (positive test) is not directly given to you!
- Positive test outcome means: [the test is positive AND person has cancer] OR [the test is positive and there is NO cancer!]
- Use the marbles example: P (two events) is similar to P (two marbles)
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is referred to as likelihood ratio which
measures the probability (given event A) of occurrence of B

$P(A \mid B)=P(B \mid A) P(A) \quad P(B)$

$P(A \mid B)$ is referred to as posterior which means the probability of occurrence of A given B

- Need P(B)
- $P(B)=$
- $\mathrm{P}($ positive test)* P (have disease)
- OR
- $\mathrm{P}($ positive test)*P(don't have disease)
- $P(B)=0.8^{*} 0.01+0.097 * 0.99=0.10304$
- =>
- $\mathrm{P}($ disease|positive $)=0.8^{*} 0.01 / 0.10304=$ $0.0776=7.8 \%$
$P(A)$ is referred to as Prior which represents the actual probability distribution of A

More dataframes
 with pandas

- Once a dataframe is created:
- it can be accessed and manipulated
- columns and cells can be accessed directly
- without iteration!
- dataframes can be concatenated
- assuming the number of columns is the same
- columns can be renamed, etc
- Crucially, matrix multiplication!
pandas demo: more dataframes

Linear Algebra

Linear Algebra

- A branch of mathematics
- ...which deals in vectors and matrices :)

Scalar

- Vector: a row of values ("scalars")
- Matrix: a bunch of vectors
- aka a table
- which has rows and columns

Linear Algebra

- Linear Algebra is pretty abstract
- Idea: perform mathematics on entire matrices
- multiply them
- prove theorems about complex expressions involving them
- etc.

Scalar	Vector	Matrix		
24	$\left[\begin{array}{cc}2 & -8 \\ \hline\end{array}\right]$	$\left[\begin{array}{ccc}6 & 4 & 24 \\ 1 & -9 & 8\end{array}\right]$		
	row column	$\left[\begin{array}{r}2 \\ -8 \\ 7\end{array}\right]$	\quad	$\operatorname{row}(s) \times \operatorname{column}(s)$
:---:				

Linear Algebra
 Sample definitions

- Matrix Transpose

- columns and rows flipped

$$
\begin{gathered}
2 \times 3 \\
{\left[\begin{array}{ccc}
6 & 4 & 24 \\
1 & -9 & 8
\end{array}\right]^{\top}} \\
A^{\top}
\end{gathered}=\frac{A}{3 \times 2}\left[\begin{array}{cc}
6 & 1 \\
4 & -9 \\
24 & 8
\end{array}\right]
$$

- note the ${ }^{\wedge}$ T notation...
- if a matrix is denoted by a random variable X ...
- X^{T}

Linear Algebra

Sample definitions

- Matrix Inverse
- Identity Matrix:
- 1s on the diagonal, Os elsewhere

Inverse Matrix

- $\mathbf{A}^{\wedge}-1$ is a matrix such that its product with \mathbf{A} is equal to the Identity Martrix...
- Yes, pretty abstract!
- But kind of like: 8 * $1 / 8=1$
- $1 / 8=8^{\wedge}-1$
- Similarly, $\mathbf{A}^{*} \mathbf{A}^{\wedge}-1=\mathbf{I}$ (dentity matrix)

Matrix multiplication linear algebra

Example: The local shop sells 3 types of pies.

- Apple pies cost $\mathbf{\$ 3}$ each
- Cherry pies cost $\$ \mathbf{4}$ each
- Blueberry pies cost $\mathbf{\$ 2}$ each

And this is how many they sold in 4 days: 8

- Definition:
- (But for now, look more at the example >)
- For two matrices A ans B, with dimensions N×Mand $\mathbf{M} \times K$:
- The product is a NxK matrix
- where each cell is a dot product of the i-th row of A and i-th column of B
- N and K may be different but M must match

Now think about this

$$
\text { Apple pie value }+ \text { Cherry pie value }+ \text { Blueberry pie value }
$$

$$
\$ 3 \times 13+\$ 4 \times 8+\$ 2 \times 6=\$ 83
$$

So it is, in fact, the "dot product" of prices and how many were sold:

$$
\begin{gathered}
(\$ 3, \$ 4, \$ 2) \cdot(13,8,6)=\$ 3 \times 13+\$ 4 \times 8+\$ 2 \times 6 \\
=\$ 83
\end{gathered}
$$

We match the price to how many sold, multiply each, then sum the result.

Matrix multiplication linear algebra

- Definition:

- For two matrices A ans B, with dimensions $N x \mathbf{M}$ and $\mathbf{M x K}$:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{ll}
58 & 64
\end{array}\right]
$$

- The product is a $\mathbf{N x K}$ matrix
- where each cell is a dot product of the i-th row of A and i-th column of B
- N and K may be different but M must match
https://www.mathsisfun.com/algebra/matrix-multiplying.html

Matrix multiplication in python demo

Matrix multiplication Activity

$$
\begin{gathered}
\text { "Dot Product" } \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
58
\end{array}\right]}
\end{gathered}
$$

- Go to link and implement the pie sales example:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{ll}
58 & 64
\end{array}\right]
$$

Now think about this ... the value of sales for Monday is calculated this way

- Apple pie value + Cherry pie value + Blueberry pie value $\Rightarrow \$ 3 \times 13+\$ 4 \times 8+\$ 2 \times 6=\$ 83$

So it is, in fact, the "dot product" of prices and how many were sold:
$\begin{aligned}(\$ 3, \$ 4, \$ 2) \cdot(13,8,6) & =\$ 3 \times 13+\$ 4 \times 8+\$ 2 \times 6 \\ = & \$ 83\end{aligned}$
We match the price to how many sold, multiply each, then sum the result.

- https://olzama.github.io/Ling471/
assignments/activity-May11.html
- Goal: see the resulting 1×4 matrix as the $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] \times\left[\begin{array}{cc}7 & 8 \\ 9 & 10 \\ 11 & 12\end{array}\right]=\left[\begin{array}{ccc}58 & 64 \\ 139 & 154\end{array}\right]$ result of multiplication!

$$
\left[\begin{array}{c}
\$ 3 \\
\$ 4
\end{array} \$ 2\right] \times\left[\begin{array}{cccc}
13 & 9 & 7 & 15 \\
8 & 7 & 4 & 6 \\
6 & 4 & 0 & 3
\end{array}\right]=[\$ 83 \$ 63 \$ 37 \$ 75]
$$

Matrix multiplication why does it matter?

- It's because much of ML can be done by matrix multiplication
- All three pictures have something in common and the latter 2 illustrate linear regression which is a basic ML algorithm
- ...but it is not easy to understand what they have in common
- You will need a course on linear algebra for this
- Our goal: Get used to the idea that data in linear regression look like vectors/matrices
- The "multiplication" part is hard to understand, which is OK
- ...suffice it to say that if you have matrices, you can multiply them
- ...and that solving a matrix equation helps you minimize errors of your algorithm
- ...which is to say it helps you train it

$$
h_{\theta}(x)=\left[\begin{array}{llll}
\theta_{0} & \theta_{1} & \ldots & \theta_{n}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\theta^{T} x
$$

Machine learning and linear regression

Machine learning bird's eye view

- Machine learning:
- Want a function such that it predicts \mathbf{y} given \mathbf{x}
- e.g. POS or NEG given a review
- "Train" such a function automatically on observations
- "training data"
- What kind of function/curve fits the observations best?
- Option 1: a curve which minimizes training error
- ...actually, such a curve will go through every point!
- that's what we need to consider for now
- Option 2: a curve which allows for some small error in training
- ...but results in smaller test error in practice
- will talk about it next time

Prediction error as a function of model complexity: train v. true error

A picture from Carlos Guestrin's lecture on ML

Machine learning linear regression

- Problem:
- Predict \mathbf{y} given \mathbf{x} where x is continuous
- e.g. predict weather, cost, distance, salary...
- Why do we bother with continuous varialbes in this class?
- Sociolinguistic variables
- ...to understand the basics of ML
- The mechanics are abstract and hard to understand
- Goal: Next time you see them, you are at least somewhat
 familiar
- No homework on implementing the mechanics
- But need to understand some concepts to be able to use packages

Linear regression in a nutshell

- Goal:

- Fit a line to observed data
- ...but no line is going to hit ALL points!
- (in any interesting problem)
- So, find a line such that the error is minimal
- In other words:
- Given set of observations, find parameters of the line equation which minimize the error
- (Remember MLE?)
- We were finding a parameter which maximized likelihood of observed data
- This is similar to finding a parameter (or parameters) which minimize the error wrt observed data

Linear regression an example

- Suppose Data:

- moving speed in mph given distance taken to stop

Linear regression

 review of what a line is:- The line equation:
- $\mathbf{y}=\mathrm{m} \mathbf{x}+\mathrm{b}$
- m: coefficient
- the line slope
- b: intercept

- where the line crosses the y-axis
- ($x 1=1 ; y 1=2$), ($x 2=2 ; y 2=4)$
dist vs speed: Scatter Plot

Linear regression an example

- The line equation:
- $\mathbf{y}=\mathrm{m} \mathbf{x}+\mathrm{b}$
- m: coefficient
- the line slope
- b: intercept
- where the line crosses the y-axis

Linear regression
 "Errors" and "Least squares"

- How many points does our line predict correctly?
- What about the ones it doesn't?
- Drop a vertical line from each
- Its length is the "error"

- how far is the prediction from the truth?
- ...now, when choosing \mathbf{m} and \mathbf{b}, minimize the sum of errors
- ...furthermore, minimize the sum of \mathbf{f} squared errors
- ...because you care about the absolute distance from the truth, not whether it is above or below the actual point

speed (mph)	distance to stop
4	2
4	10
7	4
7	22
8	16

Linear regression "Errors" and "Least squares"

- Sum of squared errors:
$x e 2 p l^{2}$
dist vs speed: Scatter Plot

- $y 1$ is the truth; $f(x 1)$ is the prediction
- Let $\mathbf{e 1}=\mathrm{y} 1-\mathrm{f}(\mathrm{x} 1)$
- $\mathrm{y} 1=\mathbf{m} \times 1+\mathbf{b}+\mathrm{e} 1 \in$ y :
- e is the error (can be positive or negative number)

speed (mph)	distance to stop
4	2
4	10
7	4
7	22
8	16

dist vs speed: Scatter Plot

Linear regression "Least squares"

- $\mathrm{y} 1=\mathbf{m} \times 1+\mathbf{b}+\mathrm{e} 1$
- One point is not worth much; can't find m or b
- Need two points to draw a line...
- For two points, error will always be 0
- So, this is inherently a problem for system of multiple equations
- which may be written and solved as a matrix muitiplication problem

speed (mph)	distance to stop
4	2
4	10
7	4
7	22
8	16

Linear regression
 "Least squares"

- $\mathbf{Y}=\mathbf{X A}+\mathbf{E}$
- All things here are matrices
- Y, A, E are just vectors (matrices of width 1)
- vectors are matrices, too!
- X needs to have the same width as the length of A
- ...to conform to matrix multiplication definition

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad A=\left[\begin{array}{c}
b \\
m
\end{array}\right] E=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

Linear regression "Least squares"

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] A=\left[\begin{array}{c}
b \\
m
\end{array}\right] \neq\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

- $\mathbf{Y}=\mathbf{X A + E} \ll$ want \mathbf{E} to be minimal. Now, you know \mathbf{Y} and you know \mathbf{X} ! You don't know \mathbf{A}.
- If you'd taken a course (or two) in linear algebra, you would know that, to minimize $\sum_{i=1}^{n} e_{i}^{2}$:

dist vs speed: Scatter Plot
- T can't explain why in this class :(
- It has to do with the fact that the sum of squares is related to both dot product (sum) and multiplying a thing by itself (squaring, product)
- It has to do with derivatives and solving a matrix equation for the derivative set = 0

- Doesn't matter! Point is, need to multiply matrices!

- What matters for you:

- Understand that data are matrices
- which have dimensions such that multiplication is possible
- Also matters: some matrices will be transposed in order to have the right dimensions and to get multiplied

Pandas linear regression demo

Matrix multiplication in machine learning

https://www.mathsisfun.com/algebra/matrix-multiplying.html

- The x-s are observations
- The y-s/h-s are puredigions

- \mathbf{h} is actually a vector
- (if you are lucky, it will be marked as such...)
- The betas/thetas are coefficients
- weights
- parameters
- Goal: solve for parameters such that sum of squared errors is minimized
- Overfitting?!
- Yes! But let's talk about it next time (briefly!)

https://www.programmersought.com/article/1216251344/

Recap of today's madness

- We looked at some pretty dense stuff
- ...which gets at the core of how ML works
- It is not possible to internalize it right away
- ...especially if you have not taken linear algebra
- Our goal was:
- To convince ourselves that it is important to be able to store data in tables (matrices)
- ...and that it is important to understand what matrices' dimensions are

Lecture survey: in the chat

