Computational Methods

for Linguists
 Ling 471

Olga Zamaraeva (Instructor)

Yuanhe Tian (TA)
05/11/21

Reminders
 and announcements

- Start thinking about presentations
- More on resources today
- Blog 4 due today
- Responses by Tuesday...

Presentation
 June 1-3, 15\% of grade

- Each student will do a short presentation:
- Must present a project (such as a research paper) that involves statistical analysis of language data
- Must relate to/reflect on social aspects
- Otherwise, can discuss systems, programming, ML...
- Suggest your presentation topic by May 25 on Canvas.
- The presentation will be peer reviewed for clarity and effectiveness of communication and visualization
- During class! We will watch and give feedback.
- Submit your presentation slides (in June) after addressing feedback (but no need to present again!)

- Your original presentation can be prerecorded or not

Presentations

resources

- Some places you can access papers/projects to present on (also see Canvas discussion board for Presentation Topics):
- https://paperswithcode.com/datasets
- CL papers:
- https://www.aclweb.org/anthology/
- Linguistic (and other) papers:
- See Blog Week 5
- Look also for similar papers
- e.g. in Google Scholar

Plan for today

- Tying up lose ends
- dataframes multiplication exercise recap (questions?)
- linear regression demo
- why was there a column of 1 s (slide 29 from last time)?
- Overfitting and regularization
- Classification
- Logistic regression
- Naive Bayes
- Out-of-vocabulary items and Smoothing
- No activity today :)

Look at the pie sales exercise in VS Code

Linear regression "Least squares"

- $\mathbf{Y}=\mathbf{A X}+\mathbf{E}$
- All things here are matrices
- Y, A, E are just vectors (matrices of width 1)
- vectors are matrices, too!
- X needs to have the same width as the length of A
- ...to conform to matrix multiplication definition
- hence the column of 1 s
- Want: solve for A to minimize $\sum_{i=1}^{n} e_{i}^{2}$
- NB: The linear regression fit curve need not be straight
- It can be any polynomial

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad A=\left[\begin{array}{c}
b \\
m
\end{array}\right] E=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

Degree of polynomial

- Polynomial: a linear equation:
- $y=a x^{\wedge} 1+b x^{\wedge} 2+c x^{\wedge} 4+d x^{\wedge} 5 . .$.
- a,b,c,d... - coefficients
- coefficients can be O!
- The higher the max degree:
- The more inflection points (the crazier) the curve

Cubic function
Degree 3

Quartic function Degree 4

Quintic function Degree 5

[^0]- The higher the coefficients:
- The more "weight" on the higher degree terms
- 0 * $x^{\wedge 123 ~ m e a n s ~} x^{\wedge} 123$ is absent!
- Linear regression algorithm must choose the coefficients
- including deciding which should just be 0 !

Overfitting and model complexity

- What kind of function/curve fits the observations best?
- Option 1: a curve which minimizes training error
- ...actually, such a curve will go through every point!
- Overfitting! No chance we will get an unseen point right (the error will be too large)
- Option 2: a curve which allows for some small error in training
- ...but results in smaller test error in practice
- such a curve is smoother (maybe even straight!)
- => it is a lower-degree polynomial

Prediction error as a function of model complexity: train v. true error

Degree of polynomial

- Polynomial: a linear equation:
- $y=a x^{\wedge} 1+b x^{\wedge} 2+c x^{\wedge} 4+d x^{\wedge} 5 . .$.
- a,b,c,d... - coefficients
- coefficients can be O!
- The higher the max degree:
- The more inflection points (the crazier) the curve
- The higher the coefficients:
- The more "weight" on the higher degree terms
- 0 * $x^{\wedge 123 ~ m e a n s ~} x^{\wedge} 123$ is absent!
- Linear regression algorithm must choose the coefficients
- including deciding which should just be 0 !

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
\square More complex class \rightarrow more variance

Calculate Yiew Pounemial Reset

Calculate View Polynomial Reset
Calculate View Potynomial Reset

Bias-Variance Tradeoff underfitting and overfitting

- A simple line is hardly good!
- A crazy polynomial also...
- What would be good?
- It depends on the shape of data
- Here, looks like y = x^2 :)
- Again, you learn the function automatically by minimizing SSE
- To avoid overfitting, you penalize model complexity

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
\square More complex class \rightarrow more variance

Calcuate Vew Pormomial Resel|
${ }^{20005-2013 \text { Caros Guestin }}$

Catcuate Vew Poumomial Resel
Catculate New Pormomial Resel

Regularization reducing overfitting

- Overfit functions = highly complex
- Penalize complexity:
- prefer smaller coefficients:
- $y=x+2 x^{\wedge} 2+0.5 x^{\wedge} 3 . .$.
- $y=482999000 x+78383946 x^{\wedge} 2+9193838 x^{\wedge} 3 . .$.
- end up with fewer terms, as many coefficients will be driven to $\mathbf{0}$!
- Some kind of regularization is part of most ML pipelines
- Stay tuned for smoothing wrt Assignment 4

Linear regression demo

Classification

Classification
 predicting discrete classes

- Is the review positive or negative?
- Is a picture that of a cat or of a dog?

- Handwriting recognition (map to digit, letter)
- ...and many many many other tasks

Linear Classification predicting discrete classes

- ...using linear equations
- Find a line which separates the data best
- (similar multiplication of matrices will be involved!)
- The linear function can be a higher degree
 polynomial
- the "line" need not be straight
- Get some datapoints wrong but minimize the overall error
- Same idea as linear regression

Linear Classification using linear regression

- Can we use linear regression for classification?
- e.g. use data coordinates to classify, above or below the decision boundary
- In principle, yes

https://stats.stackexchange.com/questions/22381/why-not-approach-classification-through-regression
- but it won't be very robust because data is not continuous
- the variance will be too high
- the model will be too sensitive to new datapoints
- we don't care about the distance from point to line!

Linear Classification predicting discrete classes

- How to dispence with high variance?
- Want a simple model:
- Don't care about specific distances etc.
- Consider the probability of a point being on either side of the separator
- Compute the probability of a point being above a certain line/curve/plane
- If it is high, predict class A. Otherwise predict B.
- define "high", e.g. $\mathbf{0 . 5}$

Linear Classification predicting discrete classes

- Can't use linear regression though!
- We want a function that, given \mathbf{x}, returns $\mathbf{P (y)}$!

https://medium.com/@ODSC/logistic-regression-with-python-ede39f8573c7
- Probabilities range from 0 to 1
- The output of a linear equation ranges from $-\infty$ to $+\infty$
- Solution:
- Map a linear function to a function which ranges from 0 to 1
- e.g. one of the family of logistic functions

Logistic regression predicting discrete classes

- Map a linear function to a function which ranges from 0 to 1

https://medium.com/@ODSC/logistic-regression-with-python-ede39f8573c7
- e.g. one of the family of logistic functions
- The function then outputs numbers between 0 and 1
- ...which you can use as probabilities
- ...to make predictions!

Logistic regression predicting discrete classes

- Is a classic classification method
- ...which is not really used much on its own these days (at least not in research)
- But, logistic and similar functions are still a core component of any system
- because the mapping of the output to probabilities is a core classification aspect

Naive Bayes

Naive Bayes a classification algorithm

- Like logistic regression, a classic algorithm which is no longer considered state-of-theart

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
- still very often useful in practice
- Relies on the Bayes Theorem
- And on what we know about probabilities of sequences

Naive Bayes a classification algorithm

- $\mathrm{P}($ class \mid data $)=P\left(\right.$ data|class)* ${ }^{*}($ class $) / P($ data $)$
- P(POS|text) = P(text|POS)*P(POS)/P(text)
- What's P(text)?!

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
- e.g.: text = "This is a great film!"
- $P($ text $)=P($ This $) * P($ is $) * P(a) * P($ great $) * P(f i l m) * P(!)$
- or:
- $\mathrm{P}($ text $)=P($ This $) * P($ great $) * P($ film $) * P(!)$
- OK, what's P("great")?!

Naive Bayes a classification algorithm

- $\mathrm{P}($ text $)=\mathrm{P}(\text { This })^{*} \mathrm{P}(\mathrm{is})^{*} \mathrm{P}(\mathrm{a})^{*} \mathrm{P}(\text { great })^{*} \mathrm{P}(\text { film })^{*} \mathrm{P}(!)$
- OK, what's P("great")?!
- $P($ "great") $=$ count("great")/count(all words)
- (not that trivial in practice but that's what it is conceptually)
- Naive Bayes relies on word counts to estimate probailities of word sequences
- ...and trains on labeled data
- ...to predict labels for unseen/unlabeled data

Naive Bayes a classification algorithm

- Naive Bayes relies on word counts to estimate probailities of word sequences
- ...and trains on labeled data
- ...to predict labels for unseen/unlabeled data

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
- What's "nontrivial" about it
- Some words are noise
- Do you care about the probability of "the"?
- it is going to be the same in all texts, and very high
- Well, that's easy: can clean that out
- "stopwords", just remove them from text

Naive Bayes
 a classification algorithm

- Naive Bayes relies on word counts to estimate probailities of word sequences
- ...and trains on labeled data
- ...to predict labels for unseen/unlabeled data

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
- What's "nontrivial" about it?
- What if you have never seen a word before?
- It's count will be 0
- It's probability will be 0
- You multiply your terms by $0 .$.
- ...and P(entire text) $=0$!
- Not good!

Lecture survey: in the chat

[^0]: https://bookdown.org/tpinto_home/Beyond-Linearity/polynomial-regression.html

