Computational Methods for Linguists Ling 471

Olga Zamaraeva (Instructor) Yuanhe Tian (TA) 05/18/21

Reminders and announcements

- Presentation topic suggestions
- Some of today's slides will look different
 - (I cheated and used a guest lecture I once did, as well as a Ling472 lecture I did)
 - (material probably overlaps with 472)
 - aside: LaTeX
 - maybe a demo next week

Plan for today

- Smoothing
- Language models
 - N-gram
 - Neural
 - maybe spill over to Thu

Naive Bayes a classification algorithm

- Naive Bayes relies on word counts to estimate probailities of word sequences
- ...and trains on labeled data
- ...to predict labels for unseen/unlabeled data
- What's "nontrivial" about it?
- What if you have never seen a word before?
- It's count will be 0 •
- It's probability will be 0
- You multiply your terms by 0...
- ...and P(entire text) = O!
- Not good!

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

Smoothing for out-of-vocabulary" items

- Crucial technique for all probabilistic modeling
- Don't want zeros in your counts, ever!
- Add a fake "unknown" word to your training vocabulary
- For every real word, subtract some small probability mass and add it to the unknown's!
- Now in testing, every UNK gets a **non-zero** probability!
- Why subtract from real words though?
- And how is this related to smoothing curves in linear regression?

Language Models

"A grammar is better, but in practice people use language models."

"You are uniformly charming!" cried he, with a smile of associating and now and then I bowed and they perceived a chaise and four to wish for.

Generated by a trigram LM trained on Austen's books

"What comes out of a 4-gram model of Shakespeare looks like Shakespeare because it is Shakespeare."

D. Jurafsky

D. Jurafsky

FGRACC

Language models and their role in computational linguistics

Guest lecture University of British Columbia

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

N-grams: The (simplified) math behind the simplest LM

- The LM is *trained* on a corpus and can then assign probabilities to new, *test* sentences
- Train by estimating actual probabilities of word sequences from actual corpora
- E.g. what probability will a LM trained on corpus TC assign to the sentence:

"London is the capital of England"

- In corpus TC, how many times did we see England after London is the capital of?
- d"

Language models and their role in computational linguistics

Guest lecture University of British Columbia

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

• Language is very creative!

N-grams: The simplest LM

London is the capital of England

What we'd like to calculate:

C(London, is, the, capital.of, England) C(London, is, the capital of)

In some cases, it is possible (using e.g. the web) But in most cases, we'd never find a corpus big enough

Language models and their role in computational linguistics

Guest lecture University of British Columbia

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

Markov assumption

Andrey Markov (1856-1922) (Not-so-fun-fact: In 1908, Markov was fired from the University for refusing to spy on his students)

Markov assumption: The probability of a given word only depends on a few previous words, not the entire sequence

Approximate the history given the last (few) word(s)

 $P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-1})$

n-

Language models and their role in computational linguistics

Guest lecture University of **British Columbia**

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

N-grams and Naive Bayes

- What's the relationship?
 - N-grams are not a classifier
 - they are good for text generation
 - and for estimating word probabilities
 - ...which in turn is what Naive Bayes needs!
 - Naive Bayes is a classifier which uses word frequencies
 - it can use unigram, bigram, n-gram

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

N-gram: bigger N means closer approximation P(England |London is the capital of) P(England |of) – bigram P(England |capital of) – trigram

- P(England |the capital of)
- P(England | is the capital of)

Language models and their role in computational linguistics

Guest lecture University of **British Columbia**

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

N-gram: bigger N means closer approximation

Consider *generating* from such models:

- P(Horatio |knew him,) trigram
- P(Horatio |Alas, poor Yorick! | knew him,) P(Horatio |him,) – bigram
 - P(Horatio || knew him,)
 - P(Horatio |Yorick! I knew him,)
 - P(Horatio |poor Yorick! | knew him,)

Small N = "silly" model, big N = rigid model (how interesting is it to generate exact strings from Shakespeare's Hamlet?)

Language models and their role in computational linguistics

Guest lecture University of British Columbia

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

Desireable: Generalizing over contexts

- London is the capital of...
- Causton is the capital of...

I <u>detest</u> this movie

Language models and their role in computational linguistics

Guest lecture University of **British Columbia**

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

Interim summary

- N-grams are simple, easily implementable, trainable on small amounts of data
- Today, NLP mostly uses more flexible neural LMs

but, are either silly (approximate the corpus poorly) or start generating Shakespeare (approximate too much)

Language models and their role in computational linguistics

Guest lecture University of British Columbia

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

Neural language models

Neural* language models

- Predict the word given context (or vice versa)
- Generalize over contexts, are more "creative" than n-grams:
 - Learn which words occur in similar contexts
 - It is possible to build a neural model that creates representations for unknown words "on the fly"**
- ► But:
 - Are more complex to train
 - Require lots of training data to start working well
 - Learn the training data biases

*These are *simplified* neural architectures ******Not the same architecture as in the lecture

Language models and their role in computational linguistics

Guest lecture University of **British Columbia**

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

- The XOR function
 - Similar to our familiar OR in python and other programming languages
 - ...but XOR is True only when one of the expressions is
 True

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

The XOR output plot — Image by Author using draw.io

- XOR is not linearly separable
 - need a more complex decision boundary
 - The **data points** are:
 - (0,0),(0,1),(1,0), and (1,1)
 - (x1,x2)
 - The output: **y** is either 1 or 0
 - True or False
 - Can we **map** x1 and x2 to a different space such that we can separate the data points linearly and correctly output the y?

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7

- XOR is not linearly separable
 - need a more complex decision boundary
 - The **data points** are:
 - (0,0),(0,1),(1,0), and (1,1)
 - (x1,x2)
 - The output: **y** is either 1 or 0
 - True or False
 - Can we map x1 and x2 to a different space such that we can separate the data points linearly and correctly output the y?

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-

Figure 7.5 The functions AND, OR, and XOR, represented with input x_0 on the x-axis and input x_1 on the y axis, Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig (2002).

Speech and Language Processing (Jurafsky and Martin 2004)

- Construct a simple neural network
 - Each "neuron" is a **function**
 - computes the sum of w1x1+w2x2+cb
 - if result < 0: returns 0
 - Each x is **weighted** upon entering each neuron
 - So, like a linear equation but a network, and nonlinear :)

a = X

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

on the arrows represent the weights w for each unit, and we represent the bias b as a weight on a unit clamped to +1, with the bias weights/units in gray.

Speech and Language Processing (Juratsky and Martin 2004)

 $h_{2}: 0.1+0.1 - 1 = -1 \longrightarrow 0$

Activity (which I know you always wanted to do): (Manually) compute the neural XOR for: [x1=1, x2=1] and [x1=1, x2=0]

https://olzama.github.io/Ling471/assignments/activity-May18.html

- Our x1 and x2:
 - now turned into h1 and h2
 - ...which exist in a different space
 - ...and are linearly separable

• What are the "two matrices"?!

(Simplified) neural models architecture

- The feed-forward SkipGram model (Mikolov et al)
- Input: a word from the vocabulary
- Middle: two matrices and some matrix multiplication
- Output: a probability for each word in the vocabulary occurring *somewhere nearby* the input word

Language models and their role in computational linguistics

Guest lecture University of **British Columbia**

Introduction

Statistical language models

Neural language models

LMs and ling knowledge

Lab preview

 \neg \land $(\sim$

Lecture survey in the chat!