Computational Methods

for Linguists
Ling 471

Olga Zamaraeva (Instructor)
Yuanhe Tian (TA)
05/18/21

Reminders

and announcements

» Presentation topic suggestions

« Some of today'’s slides will look
different

» (I cheated and used a guest

lecture | once did, as well as a
Ling472 lecture | did)

- (material probably overlaps with
A472)

e aside: LaTeX

« maybe a demo next week

Language models
and their role in computational linguistics

Guest lecture
University of British Columbia

Olga Zamaraeva
olzama@uw.edu

Department of Linguistics, University of Washington
February 5 2019

Plan for today

« Smoothing

- Language models
« N-gram
 Neural

« maybe spill over to Thu

Naive Bayes

a classification algorithm

* Naive Bayes relies on word counts to estimate probailities of
word sequences

- ...and trains on labeled data

- ...to predict labels for unseen/unlabeled data

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

* What's “nontrivial” about it?

- What if you have never seen a word before?
* It's count will be O

* It's probability will be O

* You multiply your terms by O...

- ...and P(entire text) = O!

* Not good!

SmOOth i ng Laplacian Smoothing z
freq(w;, class

class € {Positive, Negative}

" 3 PWi lass) =
for out-of-vocabulary” items (wilelass) = = Nwm
P(w;|class) = red\¥i; (ld))_@
N('lilSS A% SS
. . - . . N_... =frequency of all words in class
* Crucial technigue for all probabilistic modeling Ws. miniinber AT el

* Don’t want zeros In your counts, ever!

* Add a fake “unknown” word to your training J M N k Y
vocabulary

s://laptrinhx.com/tweet-sentiment-analysigfusing-naive-bayes-classifier-3354548227/

* For every real word, subtract some small probability
mass and add it to the unknown’s!

* Now in testing, every UNK gets a non-zero probability!
* Why subtract from real words though?

* And how is this related to smoothing curves in linear
regression?

Language Models

“A grammar is better, but in practice people use language
models.”

D. Jurafsky

“You are uniformly charming!” cried he, with a smile of
associating and now and then | bowed and they perceived a
chaise and four to wish for.

Generated by a trigram LM trained on Austen’s books

“What comes out of a 4-gram model of Shakespeare looks
like Shakespeare because it is Shakespeare.”

D. Jurafsky

Introductgon

Statist/cal
langu/ige models

Neural lang) age
models

LMs and ling

knowler.ge

Lab pi sview

,:mﬂ-e

Language Models
‘/?ﬂlm

London is the capltal of . E 006 [JL l«.!

> Language models are programs which output the most
probable word given some context

» That's it!

X ‘I;(O‘M

Introduction

Statistical
language models

Neural language

models

LMs and ling

knowledge

N-grams: The (simplified) math behind the
simplest LM

» The LM is trained on a corpus and can then assign
probabilities to new, test sentences

» Train by estimating actual probabilities of word
sequences from actual corpora

» E.g. what probability will a LM trained on corpus TC
assign to the sentence: Z

l“London is the capital of,England "’

> In corpus TC, how many times did we see England after
London is the capital of?

Introduction

Statistical
language models

Neural language
models

LMs and ling

knowledge

Lab preview

« Language s
very creative!

e S——

N-grams: The simplest LM

London is the capital of England

» What we'd like to calculate:

> In some cases, it is possible (using e.g. the web)
» But in most cases, we'd never find a corpus big enough

Introduction

Statistical
language models

Neural language
models

LMs and ling

knowledge

Lab preview

Markov assumption

Andrey Markov (1856-1922)
(Not-so-fun-fact: In 1908, Markov was fired from
the University for refusing to spy on his students)

Introduction

Statistical
language models

Neural language

> Markov assumption: The probability of a given word models
only depends on a few previous words, not the entire Ms and ling
Sequence Lab preview
» Approximate the history given the last (few) word(s)

P(Wn‘W’f_l) ~ P(Wnlwn—l)

7 L T;,VI

N-grams

and Naive Bayes

- What's the relationship?

« N-grams are not a classifier

» they are good for text generation

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

» and for estimating word
probabilities

 ...which in turn is what Naive
Bayes needs!

- Naive Bayes is a classifier which uses
word frequencies

» it can use unigram, bigram, n-gram

N-gram: bigger N means closer approximation

> P(England |London is the capital of) Introduction
> P(England |of) — bigram it:;f;“gcj'mo e
> P(England |capital of) — trigram T
> P(England [the capital of) models
> P(England |is the capital of) L Ms and ling

knowledge

N-gram: bigger N means closer approximation

Consider generating from such models:

» P(Horatio |Alas, poor Yorick! | knew him,)
> P(Horatio |him,) — bigram
> P(Horatio |knew him,) — trigram
> P(Horatio || knew him,)
> P(Horatio |Yorick! | knew him,)
> P(Horatio |poor Yorick! | knew him,)

Small N = “silly” model, big N = rigid model (how
interesting is it to generate exact strings from Shakespeare's
Hamlet?)

Introduction

Statistical
language models

Neural language
models

LMs and ling

knowledge

Lab preview

Desireable: Generalizing over contexts

» London is the capital of...

Introduction

» Causton is the capital of...

Statistical
language models

Positive or negative sentiment? Ne“j"al' language
MOAaceiS

| hated this movie | detest this movie LMs and ling

\ / knowledge

Lab preview

dislike ~ detest

\‘g

Figure from Allyson Ettinger’s tutorial at SCiL 2019

bh
hate abhor

Interim summary

» N-grams are simple, easily implementable, trainable on
small amounts of data

> but, are either silly (approximate the corpus poorly) or
start generating Shakespeare (approximate too much)

» Today, NLP mostly uses more flexible neural LMs

Introduction

Statistical
language models

Neural language
models

LMs and ling

knowledge

Lab preview

Neural language models

Neural* language models

» Predict the word given context (or vice versa)
» Generalize over contexts, are more “creative” than
n-grams:
> Learn which words occur in similar contexts
> |t is possible to build a neural model that creates
representations for unknown words “on the fly"**
» But:

> Are more complex to train
» Require lots of training data to start working well
> Learn the training data biases

*These are simplified neural architectures
**Not the same architecture as in the lecture

Introduction

Statistical
language models

Neural language
models

LMs and ling
knowledge

Lab preview

 they deal well with non-
linearly-separable data

Output of neuron =Y= f(wl. X1+ w2.X2 +b)

https://www.kdnuggets.com/2016/11/quick-introduction-neural-networks.html

exc\wsive OR o= false
XOR [= True

A case for neural nets ’

« The XOR function

« Similar to our familiar OR in
python and other
programming languages

e ...but XOR is True only when
one of the expressions is
True

NOT AND OR AOR

XOR

A case for neural nets

-
v
il
N
Ll
N

a |y a b [y a h |y a b |y

01 0 0 (D0 0 0|0 0 0 (0

110 o 1 |0 o 1 |1 o 1 |1

1T 0 |0 1T 0 |1 1T 0 |1

« XOR is not linearly separable LN 11 11 1110
e N eed ad more com p I ex d eC i S i on bo un d ad ry https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

- The data points are:
- (0,0),(0,1),(1,0), and (1,1)
. (x1,x2)

« The output: yis either1or O
 True or False

« Can we map x1 and x2 to a different
space such that we can separate the
data points linearly and correctly output
the y?

https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7

XOR

A case for neural nets

« XOR is not linearly separable

need a more complex decision boundary
The data points are:

- (0,0),(0,1),(1,0), and (1,1)

. (x1,x2)

The output: y is either 1 or O

 True or False

Can we map x1 and x2 to a different
space such that we can separate the
data points linearly and correctly output
the y?

-
>
il
N
Ll
\

—
o
—_—-0 0 | D

e == B = B =
-_—0 O O |=
e = = B

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-

72, 2,
) 1 @ o
0 O % 0 b ——
0 1 0 1
2) @n X, b) @2
Figure 7.5 affunctions AND, OR, and XOR, represented with input xy on the x-axis and input x; on the

y axis, Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig

(2002).

Speech and Language Processing (Jurafsky and Martin 2004)

XOR

A case for neural

y a b |y
v 0 0 0|0 0 0lo (oolod
110 0 1 (0 o 1 [1 o 1 [1
7’ 1 0|0 1 0|1 1 0|1
. 1T 1 |1 1T 1 |1 1T 1 | 0
Construct a simple neural network

" ”n ° ° https://www.eetimes.com/how-to-invert-three-signals-with-only-twgynot-gates-and-no-xor-gates-part-1/
. Each “neuron” is a function "\ W\ —é S ns&
\ < (VA

. computes the sum of g[’bt Wi /@ 6

WIx1+w2x2+cb

. if result < O: returns O ‘\’ %
. . " O =90 g
- Each x is weighted upon \é ¥ 0

entering each neuron

13T R XOR solution ﬂr Goodfellow et P (2016). There are three ReLLU units, in
two layers; we’ve called them Ay, hy (h for “hiddgn layer”) and y;. As before, the numbers

S O ’ | | ke d | | near eq ua t | on b Ut a on the arrows represent the weights w for each unit, and we represent the bias b as a weight
. on a unit clamped to +1, with the bias weights/units in gray.
n etWO r k a n d n O n | I n ea r .) Speech and Language Processing (Juratsky and Martin 2004)
4 o h

(+0: | =[=—] —> ©

Activity (which | know you always wanted to do):
(Manually) compute the neural XOR for:
[x1=1, x2=1] and [x1=1, x2=0]

https://olzama.github.io/Ling471/assignments/activity-May18.html

https://olzama.github.io/Ling471/assignments/activity-May18.html

XOR

A case for neural nets

« Our x1 and x2:
« now turned into h1 and h2

« ..Which exist in a different
space

. ...and are linearly separable

-
>
il
N
Ll
\

—
o
—_—-0 O | D
e == B = B =
-_—0 O O |=
S = = B

a) The original x space b) The new 4 space

The hidden layer forming a new representation of the input. Here is the rep-
resentation of the hidden layer, 4, compared to the original input representation x. Notice
that the input point [0 1] has been collapsed with the input point [1 0], making it possible to
linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

Speech and Language Processing (Jurafsky and Martin 2004)

o

(Simplified) neural models architecture V

> The feed-forward SkipGram model (Mikolov et al)

> |nput: a word from the vocabulary

» Middle: two matrices and some matrix multiplication ntroduction
.] Statistical
> OUtpUt: d prObab|||ty for eaCh Word N the VocabUIary language models
occurring somewhere nearby the input word Neural language
models
Output Layer :
L Softmax Classifier LMs and ling
. knowledge
H 'dden Layer Probability that the word at a

- randomly chosen, nearby
position is “abandon”

Linear Neurons

Input Vector Lab preview

« What are the 0
0
ll.two 0 - .. “ability”
0
° n
matrices”?! wWof g
A ‘1" in the position 0 - .. “able”
corresponding to the —%»
word “ants” 0
0
10,000 /
positions
300 neurons - .. “zone”

10,000
neurons

Lecture survey in the chat!

