Computational Methods

for Linguists
 Ling 471

Olga Zamaraeva (Instructor)

Yuanhe Tian (TA)
05/18/21

Reminders and announcements

- Presentation topic suggestions
- Some of today's slides will look different
- (I cheated and used a guest lecture I once did, as well as a Ling472 lecture I did)

- (material probably overlaps with 472)
- aside: LaTeX
- maybe a demo next week

Plan for today

- Smoothing
- Language models
- N-gram
- Neural
- maybe spill over to Thu

Naive Bayes
 a classification algorithm

- Naive Bayes relies on word counts to estimate probailities of word sequences
- ...and trains on labeled data
- ...to predict labels for unseen/unlabeled data

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
- What's "nontrivial" about it?
- What if you have never seen a word before?
- It's count will be 0
- It's probability will be 0
- You multiply your terms by $0 .$.
- ...and P(entire text) $=0$!
- Not good!

Smoothing

for out-of-vocabulary" items

- Crucial technique for all probabilistic modeling

Language Models

"A grammar is better, but in practice people use language models."
D. Jurafsky
"You are uniformly charming!" cried he, with a smile of associating and now and then I bowed and they perceived a chaise and four to wish for.

Introduction
Statistital
langu ge models
Neural lang, age
models
LMs and ling
knowler ge
Lab pi गview

Generated by a trigram LM trained on Austen's books
"What comes out of a 4-gram model of Shakespeare looks like Shakespeare because it is Shakespeare."
D. Jurafsky

N-grams: The (simplified) math behind the simplest LM

- The LM is trained on a corpus and can then assign probabilities to new, test sentences
- Train by estimating actual probabilities of word sequences from actual corpora
- E.g. what probability will a LM trained on corpus TC

Statistical
language models
Neural language
models
LMs and ling
knowledge
Lab preview assign to the sentence:
"London is the capital of England"

- In corpus TC, how many times did we see England after London is the capital of?
- Language is very creative!

N-grams: The simplest LM

London is the capital of England

Introduction

- What we'd like to calculate:

Statistical
language models

Neural language models

LMs and ling
knowledge
Lab preview

- In some cases, it is possible (using e.g. the web)
- But in most cases, we'd never find a corpus big enough

Markov assumption

Andre Markov (1856-1922)
(Not-so-fun-fact: In 1908, Markov was fired from the University for refusing to spy on his students)

- Markov assumption: The probability of a given word only depends on a few previous words, not the entire sequence
- Approximate the history given the last (few) word (s)

Statistical language models debs

$$
P\left(w_{n} \mid w_{1}^{n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right)
$$

$$
7>
$$

$$
\Rightarrow w_{1}^{n-1}
$$

L is +0 ?
$w_{1} w_{2}$

N -grams and Naive Bayes

- What's the relationship?
- N-grams are not a classifier
- they are good for text generation
- and for estimating word probabilities
- ...which in turn is what Naive

Bayes needs!

- Naive Bayes is a classifier which uses word frequencies
- it can use unigram, bigram, n-gram
- it can use unigram, bigram, n-gram

https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

N -gram: bigger N means closer approximation

- P (England |London is the capital of)
- P(England lof) - bigram
- $\mathrm{P}($ England |capital of) - trigram
- P(England |the capital of)
- $P($ England lis the capital of $)$

Statistical
language models
Neural language
models
LMs and líng
knowledge

N -gram: bigger N means closer approximation

Consider generating from such models:

- P(Horatio |Alas, poor Yorick! I knew him,)
- $\mathrm{P}($ Horatio |him, $)$ - bigram
- $\mathrm{P}($ Horatio |knew him, $)$ - trigram

Statistical
Statistical language models

- P(Horatio |I knew him,)
- P(Horatio |Yorick! I knew him,)

Neural language
models

- P(Horatio |poor Yorick! I knew him,

Small $\mathrm{N}=$ "silly" model, big $\mathrm{N}=$ rigid model (how interesting is it to generate exact strings from Shakespeare's Hamlet?)

Desireable: Generalizing over contexts

- London is the capital of...
- Causton is the capital of...

Positive or negative sentiment?

```
Neural language
```

models

Figure from Allyson Ettinger's tutorial at SCiL 2019
LMs and ling knowledge
Lab preview

Pisur from Allson Etting tur

Interim summary

_anguage model and their role in linguistics Guest lecture University of British Columbia
 Introduction

Statistical language models

Neural language models

LMs and ling knowledge

Lab preview

- Today, NLP mostly uses more flexible neural LMs

Neural language models

Neural* language models

- Predict the word given context (or vice versa)
- Generalize over contexts, are more "creative" than n-grams:
- Learn which words occur in similar contexts
- It is possible to build a neural model that creates representations for unknown words "on the fly"**
- But:

Language models and their role in
 computationa
 Guest lecture
 British Columbia
 Introduction
 Statistical
 language models

Neural language models

LMs and ling

- Are more complex to train
- Require lots of training data to start working well
- Learn the training data biases

[^0]\[

\underset{A case for newralnets}{y} $$
\begin{gathered}
y \\
\text { XOR }
\end{gathered}
$$
\]

(d): $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$

- Huge power of neural nets: tod mather go
- they deal well with non-
linearly-separable data

$$
\begin{aligned}
& y=m x+b \\
& y=m \cdot \hat{x}_{1}^{\prime \prime}+n \hat{x}_{2}^{2}+b
\end{aligned}
$$

exclusive $O R \quad 0=$ False

 XOR $\quad 1=$ TrueA case for neural nets

- The XOR function
- Similar to our familiar OR in python and other programming languages
- ...but XOR is True only when one of the expressions is True

$$
{ }^{2}
$$

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

XOR

A case for neural nets

- XOR is not linearly separable
- need a more complex decision boundary
- The data points are:
- (0,0),(0,1),(1,0), and (1,1)
- ($\mathbf{x 1} 1, \mathbf{x} 2$)
- The output: \mathbf{y} is either 1 or 0
- True or False
- Can we map $x 1$ and $x 2$ to a different space such that we can separate the data points linearly and correctly output the y ?

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

XOR

A case for neural nets

- XOR is not linearly separable
- need a more complex decision boundary
- The data points are:
- (0,0),(0,1),(1,0), and (1,1)
- ($\mathbf{x 1} 1, \mathbf{x} 2$)
- The output: \mathbf{y} is either 1 or 0
- True or False
- Can we map $x 1$ and $x 2$ to a different space such that we can separate the data points linearly and correctly output the y ?

a	b	y
0	0	0
0	1	0
1	0	0
1	1	1

a	b	y
0	0	0
0	1	1
1	0	1
1	1	1

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

- Construct a simple neural network

- Each "neuron" is a function
- if result < 0 : returns 0

Figure 7.6 XOR solution fer Goodfellow et al (2016). There are three ReLU units, in two layers; we've called them h_{1}, h_{2} (h for "hidden layer") and y_{1}. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight on a unit clamped to +1 , with the bias weights/units in gray.

- So, like a linear equation but a network, and nonlinear :)

$$
h_{2}: 0.1+0.1-1=-1 \rightarrow 0
$$

Activity (which I know you always wanted to do): (Manually) compute the neural XOR for:
 $$
[x 1=1, x 2=1] \text { and }[x 1=1, x 2=0]
$$

https://olzama.github.io/Ling471/assignments/activity-May18.html

XOR

A case for neural nets

- Our x1 and x2:

- now turned into h1 and h2
- ...which exist in a different space
- ...and are linearly separable

https://www.eetimes.com/how-to-invert-three-signals-with-only-two-not-gates-and-no-xor-gates-part-1/

Figure 7.7 The hidden layer forming a new representation of the input. Here is the rep resentation of the hidden layer, h, compared to the original input representation x. Notice that the input point [01 1] has been collapsed with the input point [10], making it possible to linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

(Simplified) neural models architecture

- The feed-forward SkipGram model (Mikolov et al)
- Input: a word from the vocabulary
- Middle: two matrices and some matrix multiplication
- Output: a probability for each word in the vocabulary occurring somewhere nearby the input word

Neural language models

LMs and ling knowledge

Lab preview "two matrices"?!

Lecture survey in the chat!

[^0]: *These are simplified neural architectures
 **Not the same architecture as in the lecture

