Computational Methods for Linguists Ling 471

Olga Zamaraeva (Instructor) Yuanhe Tian (TA) 05/27/21

Reminders and announcements

- Please fill out the presentations survey
- Please don't miss presentation deadlines even if they are "ungraded"
 - be mindful of the timezones
- Last Blog due today!
- Assignment 5 published

Reminders and announcements

- Assignment 5 published
 - I ask you to figure out how to sort a dict by value in descending order
 - using built-in methods
 - what's "value" in a dict?
 - As before, you will be **adapting** code
 - That's valuable skill
 - ...more valuable in practice than writing code from scratch

Plan for today

- Some notes on lists and dicts
 - for HW5
- Visualizing results

= communicating results!

- Activity with Matplotlib
- Bonus!
 - Entropy and info gain
 - (if there's time)

Lists, dicts, and sorting

Lists, dicts, and sorting data structures

- Lists are ordered
- Dicts are unordered
- Can a dict be sorted?
 - No, in a sense that there is no direct method and no properties associated with it
 - Yes, in a sense that in practice, a dict can contain key-value pairs in a sorted order
 - In practice, we often need that

	Mutable	Ordered	Indexing / Slicing	Duplicate Elements	
List	\checkmark	\checkmark	\checkmark	\checkmark	
Tuple	X	\checkmark	\checkmark	\checkmark	
Set	\checkmark	X	X	×	

https://towardsdatascience.com/15-examples-to-master-python-lists-vs-sets-vs-tuples-d4ffb291cf07

https://bjc.edc.org/bjc-r/cur/programming/old-labs/python/comparing_dicts_lists.html?topic=nyc_bjc%2FNA-python.topic

Lists, dicts, and sorting

- How to sort a dict?
- Conceptually:
 - treat it as a list of key-value pairs
 - items()
 - sort the list (using sorted())
 - then convert back to dict
 - if needed!
- Technically:
 - Try to figure out on your own for HW5!

https://laptrinhx.com/how-to-sort-a-dictionary-by-value-in-python-2183312668/

https://bjc.edc.org/bjc-r/cur/programming/old-labs/python/comparing_dicts_lists.html?topic=nyc_bjc%2FNA-python.topic

Adapting code in your HW

- We had to modify the same functions multiple times wrt their "signatures"
- ...annoying
- ...but often needed in practice
- ...that being said, part of it is because assignments are new :)
 - Thanks for your patience!

Visualizing results

Matplotlib

- <u>https://matplotlib.org/stable/api/</u>
 <u>as_gen/matplotlib.pyplot.html</u>
- line styles:
 - <u>https://matplotlib.org/2.0.2/</u>
 <u>api/lines_api.html</u>
- colors:
 - <u>https://matplotlib.org/stable/</u> <u>gallery/color/</u> <u>named_colors.html</u>

https://blog.xkcd.com/2010/05/03/color-survey-results/

Pandas visualization

- Uses matplotlib under the hood
- <u>https://pandas.pydata.org/</u> <u>pandas-docs/stable/</u> <u>user_guide/visualization.html</u>

Tons of resources/tutorials of all sorts! I will demo a few things! After that, go and explore for your HW5 :)

Bonus: Entropy and Information Gain Decision Trees

Entropy and information gain

- Entropy: ullet
 - measure of unpredictability
 - measured in "bits"
 - P=1/2 (50-50) -> most entropy
- Information gain:
 - IF(Y,X) = E(Y) E(Y|X)
- Some learning algorithms:
 - follow the **biggest IG**!
 - e.g. Decision Tree

https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

 $E(S) = \sum_{i=1}^{n} -p_i \log_2 p_i$ Entropy. Sometimes also denoted using the letter 'H'

$$-\frac{3}{10} \times \log_2\left(\frac{3}{10}\right) - \frac{7}{10} \times \log_2\left(\frac{7}{10}\right) \approx 0.3$$

Example Decision trees

- Classification algorithm
- Data is classic feature vectors
- Data organized into tree nodes
- Edges are feature values
 - "decisions"
- Picture:
 - an unnamed feature with values T/F
- Goal: Learn Tree A, not B
 - ...then simply use it deterministically to classify new data which as same feature representation!

http://www.niser.ac.in/~smishra/teach/cs460/lectures/lec11/

https://therbootcamp.github.io/ML_2019May/_sessions/Prediction/Prediction.html#1

Example Decision trees

- Classification algorithm
- Data is classic feature vectors
- Data organized into tree nodes
- Edges are feature values
 - "decisions"
- Picture:
 - Data has form [x,y]
 - E.g. one of blue points:
 - [x=0,y=0]
 - E.g. one of red points:
 - [x=0,y=3]

https://victorzhou.com/blog/intro-to-random-forests/

Entropy and information gain

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right)$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right)$$

 ≈ 0.79

https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Case study: Disambiguatory Signals Pimentel et al. 2021

- Conjecture:
 - More information at the beginning of words than at the end
- Theoretical evidence:
 - Information theory
 - Info "gain"
 - Based on a mathematical notion of "surprise" (how easily predictable?)
 - Related concept: "entropy"
 - This paper: Probability distributions over phonological possibilities; DL networks

https://www.aclweb.org/anthology/2021.eacl-main.3.pdf

Dataset	# Languages	Forward	Backward	Unigram	Position-Specific	Cloze
CELEX	3	3 0	0 3	2 0	2 1	2 1
NorthEuraLex	107	106 0	11 31	71 1	24 4	45 1
Wikipedia	41	4 1 0	0 39	39 1	31 1	35 2

Table 1: Number of languages in the analysed datasets with significantly larger surprisals in initial | final positions.

Lecture survey in the chat!